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Abstract

The United States (US) military and its allies have found themselves fighting

in asymmetrical wars against terrorist and insurgent groups. Allied forces have been

hesitant to attack targets at certain locations due to the probability of injury or death

to innocent civilians. Low fragmentation weapons with concentrated pressures that

dissipate quickly and the addition of aluminum (Al) particulates in explosive mixtures

will provide the capabilities needed to develop weapons needed to fight current and

future asymmetric warfare.

The issue with such weapons is that the physics of multi-phase explosives are

not well understood. The inclusion of metal particulates in explosives represents a

particularly computationally challenging physical environment, in that such flows are

“two-phase” flows. In “two-phase” flows, gas physics and solid particle physics are

simultaneously simulated. Since the two phases represent different states of matter,

matching of physical conditions for the two different phases is difficult to accomplish

computationally. The assumptions made for the development of a computational

code that simulates multi-phase explosives are presented in this document.

This research focused on analyzing the effects of aluminum in high explosives

such as PBX9501 using a computational simulation code. The Multi-Phase Explosive

Simulation (MPEXS) hydrocode is used to perform simulations on a wide range of

metalized explosive cases, where the varying parameters are the size of the aluminum

particles from 9 to 34 microns and the mass fraction of aluminum from 10 to 20

percent. The mass fraction directly correlates to the amount of aluminum present in

the mixture. The MPEXS code was evaluated by performing several studies including

a data convergence test to determine the stability and limitations of the code.
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The important explosive detonation parameters that were considered to evalu-

ate the effects of aluminum were pressure, density, detonation velocity, and Run-to-

Detonation (Run2Det) time and distance. The results showed that the gas pressure

steadily increased as the Al particle diameter increased. When the Al mass fraction

was increased, the gas pressure for each of the particles decreased. The gas density

displayed the same trends as pressure. Density steadily increased as the Al particle

size increased, and density decreased when Al mass fraction increased. Detonation

velocity steadily decreased as the Al particle diameter was increased, and detonation

velocity decreased as the Al mass fraction increased. It was concluded that varying

the aluminum mass fraction had a larger effect on Run2Det properties than varying

the aluminum particle diameter for both Run2Det distance and time. In general,

increasing the Al mass fraction will decrease the the time and distance for the deto-

nation to reach steady-state.

The addition of metal particulates in explosive mixtures increases the density of

the shock wave, causing a higher pressure in the shock. The high pressure in the

shock is devastating and will incapacitate adversaries in physical proximity of the

detonation of the munition. The concentrated pressures will dissipate quickly due to

the high density, providing a short proximity detonation. This research significantly

contributes to both current explosive simulation analysis and development of future

explosive formulations for better munitions that will save many lives.
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SIMULATION OF METAL PARTICULATES IN HIGH ENERGETIC

MATERIALS

I. Introduction

Asymmetrical warfare has presented many issues to the US and its allies in the way

wars are being fought. Allied forces have been hesitant to attack targets at certain

locations due to the probability of injury or death to innocent civilians. One solution

to this problem is the development of more advanced weapons. Low fragmentation

weapons with concentrated pressures that dissipate quickly might provide a solution

that eliminates targets with less or no collateral damage. The addition of Al particu-

lates in explosive mixtures might provide the capabilities to develop weapons needed

to fight current and future asymmetric warfare. Explosive simulation hydrocodes

such as the MPEXS code will allow researchers to study multi-phase explosives and

formulate new explosive material for use in future advanced munitions. Section 1.1

provides a background on the current issues of asymmetrical wars the US is facing.

Section 1.2 introduces the topic of metalized explosives, and discusses the assump-

tions and limitations of computational modeling of explosives. Section 1.3 presents

the research questions that were explored in this research. Finally, Section 1.4 gives

an overview of subsequent chapters in this document.
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1.1 Background

1.1.1 Asymmetrical Warfare

In the recent Iraq and Afghanistan wars, the US military and its allies have

found themselves fighting in asymmetrical wars against terrorist and insurgent groups.

These groups have resorted to strategies and tactics that involve hiding in and attack-

ing from heavily populated zones, hospitals, schools, mosques, and other locations.

This type of asymmetrical warfare makes allied forces hesitant to attack such locations

using conventional weapons due to the risk of damage to non-combatant targets or

threat to innocent civilians. Conventional weapons such as air-to-surface missiles and

bombs are designed to destroy targets effectively by destroying entire buildings and

town-blocks where adversaries are located. The problem with asymmetrical warfare is

that the US military can no longer destroy targets using conventional weapons. The

US needs the capability to eliminate targets with diminished risk of killing innocent

civilians.

War strategy is dependent on many factors and it is always changing to meet

the needs of war. One thing that has not changed much is that wars have been

fought in a conventional way for a long time. Conventional warfare can be defined

as a confrontation between two or more groups with well-defined confrontation lines.

These lines or boundaries can be a location on a field of battle, or the border line of a

country, or a boundary surrounding the location where the opposing side is located.

Either both sides come to accordance on where the battle will be fought or one side

attacks the other side’s territory. In both cases there is a clear distinction between

the groups/enemies. The purpose of conventional warfare is to weaken or destroy the

enemy’s military. When destroying or weakening the enemy is not possible, either

side might resort to asymmetrical warfare to exploit the other’s weakness.

The US and its allies have shown superiority over enemies and terrorist groups
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when it comes to conventional warfare. Operation Desert Fox was an example of an

effective attack campaign that destroyed the enemy’s military infrastructure in a short

period of time with no allied losses [10]. Operation Desert Fox was the “code-name”

for the bombing of Iraq on December 16 - December 20, 1998 [10]. The invasion of

Iraq in 2003 was another example of a successful campaign in a conventional type

of war. From 20 March 2003 - 1 May 2003 the coalition forces invaded Iraq and

overthrew the Ba’athist Iraqi government led by Saddam Hussein. The campaign

ended when Coalition forces captured the city of Baghdad. To put in perspective the

superiority of the US in conventional warfare, coalition forces attacked an enemy of

equal troop size and defeated the Ba’athist Iraqi government while only suffering a

few hundred losses.

Terrorist groups and Taliban insurgents learned that their chances of defeating

the US in conventional warfare are close to none and therefore they have resorted

to fighting with asymmetrical tactics. These adversary groups have found that the

US will not attack hospitals, schools, mosques and populated zones; therefore these

groups use such locations as hiding shelters and weapon storage. Asymmetrical war-

fare presents many problems for allied forces fighting against insurgent and terrorist

groups. The US needs to adapt to this type of warfare by developing methods and

weapons to effectively eliminate enemy targets without injuring or killing innocent

bystanders.

1.1.2 Munitions

Precision-guided munitions have allowed the US military to strike specific targets

with great accuracy. These bombs and missiles are dropped from high altitudes and

are guided within a few feet of the target. Although such munitions reduce collateral

damage by reducing the miss distance from the actual target, metal fragments from
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the munition case travel large distances and kill innocent civilians near the detonation

location.

Most conventional munitions are composed of a metal case that encloses the ex-

plosive material and other components. The purpose for the metal shell is to allow

the munitions to penetrate tanks, buildings, bunkers, and other material without dis-

integrating before detonation. When the munition detonates, the internal pressure

creates tensile stress on the case as it expands causing it to crack and creating many

metal fragments. “The sizes of fragments are a function of the rate of cylinder expan-

sion” due to the explosion, which can be calculated by Mott’s equations [4]. Chapter

27 of Cooper’s textbook [4] provides equations that calculate the velocity and position

of the fragments. It can be calculated that fragments can travel at speeds close to

Mach 3 and travel hundreds of feet depending on the size of the fragment.

The need for munitions with no to little fragmentation is growing due to current

and forthcoming wars. For that reason, the Air Force Research Laboratory (AFRL)

Munitions Directorate is exploring and testing munitions that do not produce metal

fragmentation during detonation. Reducing fragmentation in munitions can be ac-

complished by using a composite case made from materials like wound-carbon-fiber.

During the explosion the high temperatures and pressures disintegrate the carbon-

fiber casing, thus not producing any fragments. These carbon-fiber casing warheads

are a solution to reducing fragmentation. The next step in fielding such munitions

is to develop the best explosive formulation that would maximize the performance of

new carbon-fiber casing munitions.
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1.2 Research Problem Description

1.2.1 Introduction

Dr. Crochet et al have performed numerical analysis on multi-phase explosives

simulations composed of metal particulates and explosive compounds [7]. These nu-

merical analyses have provided utile information about multi-phase explosives. The

addition of metal particulates in explosive mixtures increases density to the shock

wave, causing a higher pressure in the shock. These high-pressure shocks are devas-

tating and will incapacitate adversaries in physical proximity to the detonation of the

munitions. The combination of low fragmentary munition casings and the increase

in shock wave pressure, through metalized explosives, has the potential to effectively

eliminate threats in modern asymmetrical combat theaters.

1.2.2 Background and Issues of Metalized Explosives

The issue with such a weapon is that the physics of multi-phase explosives are

not well understood. The inclusion of metal particulates in explosives represents

a particularly computationally challenging physical environment, in that such flows

are “two-phase” flows. In “two-phase” flows, gas physics and solid particle physics

must be simultaneously simulated. Since the two phases represent different states

of matter, matching of physical conditions for the two different phases is difficult to

achieve computationally.

In a simple explosive mixture there are two components, the solid explosive grains

and the reaction gas products [5]. Piston-impact simulations are commonly used to

determine properties of the explosive being tested. Detonation velocity (D), pres-

sure (P ), density (ρ), temperature (T ), and material sensitivity are a few of the

properties resulting from piston-impact simulations. Other important properties that

provide an overview of the explosive mixture is Run2Det distance and time. The de-
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scription “Run-to-detonation” is abbreviated to “Run2Det” in this report. Run2Det

time is the point when the chemical reaction of the detonation reaches steady-state

and its detonation properties remain constant. Run2Det distance is the distance from

the piston at which the shock wave reaches steady-state. As the impact-induced det-

onation is initiated, a shock front compresses and heats the explosive, which initiates

an instant exothermic chemical reaction. The energy released from the exothermic

reaction continues to feed the shock and drives the shock forward [4]. Conventional

explosives composed of a simple mixture are computationally simpler because the ex-

plosive transitions from a solid to a gas phase. Simple mixture explosives require fewer

equations that model the conservation of mass, energy, and momentum relationships.

Simulations become more complex and expensive with explosives that contain

multiple solid components. Multi-component explosives are a three-phase system;

one phase consists of a mixture of condensed explosive and metal grains, another

phase consists of the reaction zone, and the product phase consists of solid metal

oxide and vaporized metal [5]. Baer and Nunziato (BN) formulated a system of

equations that allow basic simulations of “two-phase” flows, more details of which

can be found in in Chapter III of this thesis [3] . This system of equations considers

separate mass, momentum, and energy balance equations for each component and

additional expressions related to the evolution of the solid volume fractions [5].

1.2.3 Research Assumptions and Limitations

The complexity of computationally modeling explosive reactions pushes researchers

to make many assumptions in order to obtain approximations of the reaction. With-

out assumptions these simulations would be almost impossible to model correctly.

Most of the modeling methods use Euler’s conservation equations, which assume that

the flow is inviscid and adiabatic. Chapter III explains the assumptions that were
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made in order to obtain appropriate equations of state for the explosive. Some of

those assumptions are that the model will conserve mass, momentum, and energy,

and that the flow is inviscid and adiabatic.

Although a Three-Dimension (3-D) simulation would provide results closer to ex-

perimental explosions, it would be more computationally and analytically intensive.

Most explosive modeling is limited to One-Dimension (1-D) because it is less com-

putationally expensive and will provide a simple wave solution that is sufficient to

determine detonation properties.

Certain conditions in multi-phase explosives such as the transition from solid state

to gas state of metal particulates can complicate computational simulations. Model-

ing methods for heterogeneous explosives can become very complicated. The choice

of technique is dependent upon the required accuracy and computational resources

available. Chapter III includes a detailed description of the multi-phase modeling

method chosen for this research.

1.3 Research Questions

The main focus of this research is the study of the effects of aluminum in high ex-

plosives such as PBX9501 using the hydrocode developed by AFRL. A hydrocode is

a computational program for modeling the behavior of fluid flow like explosive flows.

This research utilizes the MPEXS hydrocode which was developed by Dr. Crochet,

a computational researcher at the Munitions Directorate of AFRL. Dr. Crochet’s

numerical scheme demonstrated that detonation velocity has a strong dependence on

various parameters such as the metal grain size and metal mass fraction that is mixed

with high explosive HMX (C4H8N8O8) [5]. Al grain size and initial metal mass frac-

tion (λm) will be the independent variables of interest to study the detonation effects.

The MPEXS code will be used to evaluate the effects of aluminum particulates in the
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high explosive PBX9501 and provide a recommendation on an explosive mixture.

Determining the effects of Al grain size and mass fraction on detonation properties

for PBX9501 are the main focus, but the MPEXS hydrocode will also be evaluated.

The MPEXS code will be evaluated by performing several studies to determine the

stability and limitations of the code. The MPEXS code needs to output comparable

data to other hydrocodes. The stability of the MPEXS code will be determined by

looking for a convergence in the data as the grid resolution is increased. Performing

a wide range of simulations will insure that minimums and maximums will be tested,

providing an idea of the limitations of the code.

1.4 Overview of Subsequent Sections

Chapter I includes a background on current asymmetrical warfare and the prob-

lems presented to the US and its allies. One of the problems faced is the high proba-

bility of injury or death to innocent civilians resulting from conventional munitions.

A solution to such problem is the development of low fragmentary munition casings

and explosive formulations that yield strong blast effects within a small radius and

then rapidly drop off in strength. Chapter I also includes the research problems and

the research questions to be answered. Chapter II will present a literature review on

the fundamentals of detonation theory, previous research on the effects of aluminum

on detonation velocity, and multi-phase explosive modeling techniques. Chapter III

will present a detailed methodology of the simulations and data collection procedures

that was implemented to obtain the sought after results. Chapter IV will present the

results of the simulations that were performed. Finally, Chapter V will summarize

the data, and make conclusions about the effects of aluminum on PBX9501 and the

performance of the MPEXS code.
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II. Literature Review

2.1 Introduction

To understand the effects metal particulates have in explosive materials, one must

begin with the basics. This chapter will include a literature review of the fundamentals

of detonation to understand the physics, thermodynamics, and chemical reactions

that occur in an explosive detonation. A shock wave traveling radially out from the

center of the explosion provides very useful information of the detonation. Detonation

velocity, pressure, and temperature are a few of the parameters that are studied.

Throughout the years much of empirical data has been collected on explosives and

equations have been developed based on this data. In recent years new heterogeneous

explosives have emerged. These explosives might be a mixture of several explosive

materials or a mixture of explosive materials and metalized powders. This literature

review also includes current simulation work on heterogeneous explosive materials, as

well as explosive materials with aluminum particulates which is the area of interest

for this thesis.

2.2 Fundamentals of Detonation Theory

2.2.1 Simple Theory

An explosive detonation is a very complicated fluids problem because it is a shock

wave traveling out radially with a rapid exothermic chemical reaction zone occurring

behind the shock front [4]. By considering a simple model of detonation, it puts this

complicated fluids problem into simpler terms. The “simple theory” or “Zeldovich,

Von Neumann, and Deering (ZND) theory” mathematically simplifies detonation by

quantifying thermodynamic and kinetic terms into first-order engineering problems

[4]. The ZND theory makes the following six assumptions [4]:
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First: The flow is 1-D (laminar).

Second: The detonation front is a discontinuity because there is an instantaneous

jump in the pressure.

Third: All the reaction gases are in chemical and thermodynamic equilibrium.

Fourth: The chemical reaction zone is infinitely thin.

Fifth: The detonation velocity is constant and therefore the products leave at

the same state and are independent of time.

Sixth: The detonation products can change after leaving the reaction zone.

Based on these assumptions, a detonation is defined as a shock wave passing

through the explosive (explosive or energetic is interchangeably through out this the-

sis) with a following rarefaction wave or gas expansion. This wave is known as a

Taylor Wave, named after the British mathematician Geoffrey Ingram Taylor who

developed the Equation of State (EOS)s for the wave. The Taylor wave can be seen

in Figure 1. “The shock front, chemical reaction, and the leading edge of the rarefac-

tion are all in equilibrium; so they are all moving at the same speed, which we call

detonation velocity (D) [4].” The steady-state detonation condition for the products

is known as the Chapman-Jouguet (CJ) point, shown by the blue dot in Figure 1.

The Von Neuman Spike is the necessary energy to activate the chemical reaction,

see Figure 1. The distance between the vertical dashed line and vertical solid line in

Figure 1 represents the reaction zone of the detonation wave. For ZND theory, the

reaction zone is assumed to be infinitely thin or zero as stated by the forth assumption

listed above. Another important detonation parameter is the CJ pressure (PCJ).
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2.2.2 Wave Properties

In explosives, piston-impact simulations are commonly utilized to determine prop-

erties of the explosive materials being tested. A piston-impact problem is simulated

by a rigid piston moving with constant up inside a rigid tube which contains explo-

sive materials and gases. The denotation is initiated when the piston compresses the

explosive materials and gases. A forward-moving shock wave travels with velocity

D. To understand this piston-impact problem, the flow field between the piston and

the shock must be solved. D is an important parameter that could be solved by

using the Hugoniot relationships. A suitable flow connecting the piston and the final

state must be found [9]. The solution can consist of a rarefaction wave. When the

piston velocity is less than detonation velocity, the front of the wave still exists and

a rarefaction wave is needed “to reduce the velocity at the front to that at the piston

[9].” Figure 1 shows the detonation wave front and the rarefaction wave that follows.

Figure 1 is based on a figure by Fickett and Davis [9].

Figure 1. Detonation Wave
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The final state as described by Fickett and Davis, is where the flow stabilizes

just after the reaction zone of the detonation wave [9]. “The conservation conditions

require that the final state point in the pressure vs specific value plane lie on both this

Hugoniot curve and the Rayleigh line [9].” The final state is given by the intersection

of the Rayleigh line and the Hugoniot curve as shown in Figure 2. Figure 2 is based on

a figure by Fickett and Davis [9]. There are three different final state solutions. 1) If

D is less than the CJ detonation velocity (DCJ), the red Rayleigh line does not cross

the blue Hugoniot curve, therefore there is no steady-state solution [9]. 2) If D is equal

to DCJ , the red Rayleigh line crosses the blue Hugoniot curve at one location, the

CJ point, therefore there is one steady-state solution [9]. 3) If D is greater than the

DCJ , the red Rayleigh line crosses the blue Hugoniot curve at two locations, therefore

there are two possible solutions [9]. The upper or strong intersection where the flow

is subsonic is utilized for steady state analysis [9]. The lower or weak intersection is

rejected because the flow is supersonic [9].

Figure 2. Hugoniot Curve and Rayleigh Lines Relationships: Final State Conditions
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2.2.3 Solving for Explosive Parameters

There are a few important parameters that need to be determined for explosive

analysis and those are CJ density (ρCJ), CJ particle velocity (uCJ), PCJ , and D.

Empirical data shows that there is a relationship between initial density (ρo) and the

ρCJ . When plotting the empirical data on a log scale it is seen that there is a fairly

linear relationship. Therefore, Cooper derived Equation 1 to solve for ρCJ [4].

ρCJ = 1.386ρ0.96
o [4] (1)

where ρCJ is CJ density, and ρo is initial density.

The PCJ and uCJ can be determined from initial density and D empirical values

using mass and momentum conservation equations. Equation 2 provides an estimate

of PCJ within 5% of experimentally measured values [4]. Equation 3 demonstrates

how uCJ can be calculated when PCJ and ρo are known [4].

PCJ = ρoD
2(1− 0.7125ρ0.04

o ) [4] (2)

uCJ =
PCJ

ρoD
[4] (3)

where PCJ is CJ pressure, ρo is initial density, D is detonation velocity, and uCJ is

CJ particle velocity.

The Equations 2 and 3 provide acceptable approximations for certain explosive

parameters at the CJ state. It is also important to determine explosive parameters at

other conditions along the Hugoniot curves. Hugoniots are empirically derived EOS

relating six different variable pairs such as pressure vs shock velocity (P − U), pres-

sure vs particle velocity (P − u), pressure vs specific volume (P − v), shock velocity

vs particle velocity (U − u), shock velocity vs specific volume (U − v), and parti-
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cle velocity vs specific volume (u− v) [4]. Estimating Hugoniot relationships can

be approximated more accurately using computer codes that use empirically derived

nonlinear EOS. Due to the complexity of the nonlinear EOS these codes can be com-

putationally expensive requiring large computers or codes are not readily available

to most engineers. However, there are simple empirical correlations that will provide

solutions with reasonable accuracy based on P/PCJ ratios. The data correlates to

two regions; for reduced pressure ratios above 0.08 use Equation 4 and for reduced

pressure ratios below 0.08 use Equation 5 [4].

P
PCJ

> 0.08:

P

PCJ

= 2.142− 1.7315

(
u

uCJ

)
+ 0.3195

(
u

uCJ

)2

[4] (4)

P
PCJ

< 0.08:

P

PCJ

= 235

(
u

uCJ

)−8.71

[4] (5)

where P is pressure, PCJ is CJ pressure, uCJ is CJ particle velocity, and particle

velocity (u).

There are several methods to develop equations of state for an explosive mate-

rial. Equations of state for explosive products are only engineering approximations

for simulating explosive behaviors [9]. As discussed above, one of the methods is to

find a Hugoniot relationship between the six different variable pairs. These relation-

ships can be done with nonlinear EOS using computers or using simple empirical
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correlations. These simple theory EOSs have many limitations that are based from

the assumptions made in the Simple Theory section. So far we have focused on the

EOS for the explosive material, but now we need to look for EOS for the reaction

products. Fickett and Davis discussed several forms that have been utilized to deter-

mine reaction product EOS [9]. Some of these forms account for the chemistry in the

reaction and some that do not. There are four EOS without chemistry discussed by

Fickett and Davis; 1) the constant-γ form, 2) the constant-β equation of state, 3) the

constant-α equation of state, and 4) the Jones-Wilkins-Lee (JWL) equation of state

[9]. One of the simplest form is the constant-γ form which yields Equation 6 for PCJ

and Equation 7 for DCJ .

PCJ = 2(γ − 1)ρoq [9] (6)

DCJ
2 = 2(γ2 − 1)q [9] (7)

where PCJ is CJ pressure, DCJ is detonation velocity, heat capacity ratio (γ) = 3, ρo

is initial density, and specific heat (q).

Another form is the constant-β equation of state were β is constant for all pressures

and specific volumes. The equations for PCJ and DCJ are complicated, therefore

Fickett and Davis derived Equations 8 and 9 that approximate PCJ and DCJ based

on empirical correlations for the explosive Composition B [9].

PCJ ∝ ρo
13/6q1/3 [9] (8)

DCJ
2 ∝ ρo

2/3q1/3 [9] (9)

where PCJ is CJ pressure, DCJ is detonation velocity, ρo is initial density, and q is
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specific heat.

Another form is the constant-α equation of state. These EOS are similar to the

constant-β equation of state, but α is a function of pressure, where as β is a function

of specific volume. Just like the constant-β equation of state, the PCJ and DCJ

equations are complicated and require a computer code to solve. Another form of the

constant-β EOS is the JWL equation of state, but it uses the Gruneisen coefficient

instead of β. The four different forms can be utilized, but according to Fickett and

Wood the constant-β equation of state has the most reasonable properties in the

region of interest [9].

Once a form of the EOS has been chosen, important parameters like P and D

can be determined. The calculated P and D values, which were derived from the

EOS must be compared to empirical data. This comparison will determine if the

coefficients utilized for the P and D equations provided a good correlation to the

empirical data. If the coefficients did not provide a good correlation then they must

be reconsidered. The EOS should be calibrated using the empirical data until a

stronger correlation is derived.

2.3 Heterogeneous Explosive Materials

As previously stated, determining explosive parameters of pure explosive can be

accomplished with certain confidence, but it can get computationally intensive de-

pending on the accuracy needed and the modeling methods utilized. This problem

is exacerbated when the explosive materials are heterogeneous. Heterogeneous im-

plies the explosive mixture is composed of different materials, phases, or grains of

different densities. It is important that heterogeneous explosive materials are studied

because almost all explosives utilized in the military or commercially are heteroge-

neous. Some explosives use binding materials to hold the explosive crystals together
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as well as to decreases the shock sensitivity of the explosive by preventing the ex-

plosive grains from touching each other, making it safer to handle. Polymer-Bonded

Explosive (PBX) and Livermore’s High-Energy Explosive (LX) are examples of ex-

plosives that use “plastic” as a binder material. Other heterogeneous explosives mix

two or more explosive materials, for example Composition B consists of a mixture of

Research Department Explosive (RDX) and Trinitrotoluene (TNT).

The microstructure of these heterogeneous materials introduce internal boundary

effects that change the thermal/mechanical/chemical behavior of the explosive [2].

The microscale, at the atomic level, is usually not utilized for these types of exper-

iments because it requires greater computational resources. To get an idea between

the micro and meso scales, Dr. Baer gives an example that a 1µm long solid material

flake would contain 1017 atoms [2]. Therefore, the mesoscale is more appropriate for

these explosive experiments.

Some of Dr. Baer’s prior work has demonstrated that particle diameter and mor-

phology are very important parameters to the formulation of explosive materials [2].

Many performance parameters like shock sensitivity, pressure, detonation velocity,

and particle velocity are believed to be directly affected by particle size and mor-

phology of the explosive. In order to trigger a chemical reaction a certain pressure

threshold must be met. Tests indicated that fine grain HMX, with average particle

diameter of 10-15µm, required higher pressures to trigger the reaction than other

larger grain HMX [2]. Most of the current work is either done through computer

simulation or by impact loading experiments, but better “experimental techniques

for measurement at the mesoscale crystal level are currently in development [2].”
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2.3.1 Uniform Mixing Methods

Heterogeneous materials when mixed properly should have uniform mixture of

all the particles. The explosive mixture should be uniform enough that samples of

the same mixture should not vary from sample to sample. As with real explosives,

computer simulations of explosives should have uniform mixture. The heterogeneous

material must be modeled by using a computerized method that randomly distributes

the varied geometry crystals into a closely packed configuration, so that the mixture

is as uniform as possible [2]. Due to the infinite number of possible combinations, the

size and geometry of the explosive crystals must be limited to a certain range of sizes

and geometries. Since the main concern is particle/crystal size, the geometry can

be limited to one shape, even though in real explosive materials a myriad of crystal

shapes exist.

Dr. Baer mentions two computer simulation methods to randomly distribute and

pack particles of a heterogeneous material [2]. One of those methods is the drop-

and-fill method were randomly sized particles are dropped into a 3-D space, then a

simulated gravitational force will settle the particles at the bottom of the 3-D space.

The problem with this method is that “the influence of “gravity”, leads to interbody

collision and contact frictional effects [2].” Another method to randomly distribute

and pack particles of arbitrary sizes is by using a combination of Monte Carlo (MC)

and Molecular Dynamics (MD) methods. The MC method uses a random number

generator based on a chosen probability distribution function to determine different

particle sizes. Figure 3 is based on a figure by Dr. Baer [2]. The randomly sized

particles from the MC method are placed in a 3-D space and distributed randomly,

as shown in Figure 3a). An MD simulation method places particles by giving them a

velocity and and allowing them to collide as shown in Figure 3b). This collision dy-

namics ensure that the particles mix with each other, creating a random distribution.
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In order to pack them to a desired volume fraction, the density inside the 3-D space

is increased dynamically until the particles are locked in place, Figure 3c) [2].

Figure 3. Monte Carlo Method for Randomly Packing Particles

2.3.2 Experimental Measuring Techniques

As mentioned earlier, computational simulations are effective and provide useful

approximation, but experimental testing provide more realistic results. Experimen-

tal techniques for measurement at the mesoscale are currently in development by

organization such as Sandia National Laboratories (SNL). A new technique being

explored at SNL is a line-imaging Optically Recording Velocity Interferometry Sys-

tem (ORVIS) to provide data on particle velocity in shock-compressed heterogeneous

materials [2]. ORVIS uses electromagnetic waves to measure properties in the shock

wave and produces a 3-D line-image of the particle velocity versus time and distance.

The time resolution of the ORVIS technique is approximately 3 nanoseconds and a

spatial resolution of approximately 3 micrometers. For examples of an ORVIS particle

velocity measurement of a compaction wave see work by Dr. Baer [2].

Figure 4a shows a schematic of the line-imaging ORVIS based on a figure from Dr.

Ao [1]. The light beam from a moving object, such as a shock wave, is reflected to a

series of mirrors and optics to collimate the light. The light signal then pases through

a splitter, where the signal either goes to mirror one (M1) or mirror two (M2). The

M2 signal gets delayed by a delay etalon and the M1 signal continues with no delay.
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Both the signals meet at a crossing plane, shown in Figure 4a and b. The interfering

fringes get translated into an output signal of velocity and time [1].

(a) Line-Imaging ORVIS Schematic

(b) Crossing Plane

Figure 4. ORVIS Schematic and the Crossing Plane

The ORVIS experimental technique opens many possibilities in exploring hetero-

geneous materials, but there are a few issues with the technique [2]. One of the issues

is the large amount of data that is collected needs to be stored, analyzed, and inter-

preted. SNL is looking at ways to improve the post processing of large amounts of

data. Despite the minor drawbacks, this technique shows incredible promise in allow-

ing for the capture of useful data from physical tests, providing a practical alternative

20



to reliance on computational techniques. The combination of simulation and experi-

mental data will allow for a better understanding of the thermal/mechanical/chemical

behaviors of heterogeneous explosives.

2.3.3 Explosive Materials with Aluminum Powders

2.3.3.1 Inert Aluminum

The addition of metal particulates in explosives is not a new concept, but there

remains a lack of understanding on what occurs in the reaction. Several researchers

have developed EOS for metalized explosives in an attempt to computationally model

the behavior. Dr. Crochet developed a simulation modeling code, MPEXS, to study

the effects of metalized explosives [5]. In particular, he looked at the high explosive

HMX and Al by varying initial metal mass fraction (λom) by 15%, 25%, 50% for Al

grain mean diameter (dm) of 150µm and 100nm. As λm increases, the amount of solid

explosive available for combustion decreases, therefore affecting detonation properties

like detonation velocity, pressure, and temperature. For inert metalized explosives,

as λom increases the heat released from the compressive work behind the detonation

wave decreases [5]. The heat transfer from the gas phase is mostly influenced by the

combustion reaction energy, which is dependent on the aluminum particle size, i.e.

dm [5].

The results for detonation wave speed, end-state pressure, and end-state temper-

ature for the three different metal mass fractions at various metal particle diameters

are presented in Dr. Crochet dissertation [5]. It was concluded by Dr. Crochet that

the detonation wave speed increases as the mass fraction decreases [5]. Therefore, the

amount of Al present in the mixture directly affects the wave speed. As the mass frac-

tion decreases, both pressure and temperature increase. The wave speed, pressure,

and temperature remain constant for small aluminum grain sizes until a threshold is
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met, then it increases. Dr. Crochet suggests that “the influence of size-dependent re-

laxation processes approach a threshold, beyond which more rapid phase equilibrium

has a negligible effect” on wave speed, pressure, and temperature [5].

Dr. Crochet’s inert metal model, when compared to the experimental data of

Gogulya et al. [11], under predicted the detonation wave velocities for aluminum

grain sizes of 20, 50, and 150 microns [5]. One of the factors that is believed to

reduce the detonation wave velocity is that as the λom increases, the explosive gets

diluted and combustion energy available decreases [5]. The other factor is as the

λom increases, gas-phase energy decreases [5]. These decreases in energy reduce the

detonation wave velocities. For the 500 nm aluminum grain size, the inert metal

model over predicted the detonation wave velocity, “possibly due to the simplified

form of the drag and heat transfer coefficients” [5].

2.3.3.2 Reactive Aluminum

Dr. Crochet also performed an analysis of reactive metal in the explosive by

varying two parameters; the metal grain size dm and oxidation rate (Kpr) [5]. Based

on the metal oxidations laws utilized in the simulations, there were three values of

Kpr tested. Oxidation rates of Kpr= 1.9x10−9 m2/s and Kpr= 1.9x10−8 m2/s were

taken from suggested values based on Fedorov and Kharlamova’s research [5]. The

other oxidation rate is that of inert aluminum, Kpr= 0 m2/s [5]. The results of the

detonation wave velocity with the two varying parameters, dm and Kpr are presented

in Dr. Crochet dissertation [5]. For large aluminum particles, dm greater than 5

microns, the oxidation prefactor seems not to affect the detonation velocity. Due to

a more rapid metal oxidation and heat transfer, it is observed that the detonation

velocity increases as Kpr increases for dm less than 5 microns [5]. Similar to the inert

metal, there is a threshold of metal particle size, above/below which the size does not
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affect the detonation velocity.

The study performed by Dr. Crochet consisted on the explosive HMX and alu-

minum, where aluminum was either inert or reactive [5]. In both of these cases, it was

observed that aluminum particle size had a direct impact on many explosive prop-

erties like detonation wave velocity, end-state pressure, and end-state temperature.

Future work in this area includes improving the refinement of spatial grid utilized near

the detonation wave to properly model gas physics, thermal and chemical behaviors.

2.3.4 An Analysis of Shock-Induced Reactions in Fe2O3+Al+ Teflonr

Powder Mixtures: Reactive Material Section

Yang et al [15] conducted a series of experiments to perform a preliminary anal-

ysis of shock-induced chemical reactions. The powder mixture for this series of ex-

periments was a mixture of aluminum, hematite (Fe2O3), and Polytetrafluoroethy-

lene (PTFE) also known as Teflonr. These powder mixture samples were impacted

by a metal “flyer”, on impact it sends a shock wave through the powder mixture.

This shock wave initiates the chemical reaction and continues to feed the shock wave.

There are two Polyvinylidene Fluoride (PVDF) pressure gauges located at different

positions between the powder mixture that measure shock pressures . These gauges

are utilized to determine what is happening in the chemical reaction, which occurs

under the high pressure shock wave loading.

During the Fe2O3+Al+Teflonr powder mixture chemical reaction, Yang et al

believe that two main reactions occur. One, the reaction between Fe2O3 and Al

and the other between the Teflonr and aluminum [15]. When aluminum reacts with

Teflonr or hematite it produces a gas product of aluminum fluorides (AlFj), with j

representing the number of fluoride atoms present. The variation of shock strength

during the propagation in the mixture is thought to be determined by the product
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gas AlFj [15]. It was concluded by Yang et al that the AlFj formed depends on both

the shock pressure and temperature in the mixture. As the shock pressure increases,

more Fe2O3 and Teflonr react with aluminum; therefore reducing the amount of

fluoride atoms present in the product gas AlFj [15].

When dealing with shock induced chemical reactions and explosive reactions, there

are many assumptions made due to the complexity and speed of events. In order to

simplify the complexity of these problems, the initial assumptions made result in

non desired EOS variables and coefficients. Yang et al concluded that the variables

describing mechanical and thermodynamic reactants and products may need to be

improved [15]. These variables change too fast that chemical equilibriums might not

be reached, but it is difficult to determine the state of the reaction. Yang et al also

concluded that a further understanding is needed on how to formulate the conditions

under which the shock pressure increases and decreases during wave propagation [15].

2.4 Conclusion

The literature reviewed herein served as the foundation for the research described

in this document. The main goal of this thesis is to study the effects of aluminum

particulates in certain explosive materials via a computational simulation. This chap-

ter included a review of the fundamentals of detonations of explosives included the

basic information of the important parameters that are studied in explosives. Also,

included in this chapter was a review of current simulation work on heterogeneous

explosives with inert and reactive aluminum methods. This chapter included a review

on computational procedures to randomize mixtures of particles to simulate as close

as possible real explosives.
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III. Methodology

3.1 Introduction

The code utilized for the 1-D multi-phase simulation of Al particulates in explo-

sives needs to be consistent with thermodynamic or entropy conditions that exist in

the explosive reaction, incorporate the EOS, and the reactive burn models between

phases during the reaction. As explained earlier, the effects of metal mass fraction

(λm) and particle size (dm) are the parameters of interest. Some modifications to the

code might be necessary to properly analyze the effects of different explosive com-

pound formulations. These suggested modifications will be implemented in future

versions of the code. Simulations will be performed on several formulations of explo-

sives, different particle grain sizes, and different metal mass fractions. This research

will look at the stability of the code by running several tests to determine consis-

tency and limits of the code. This research will look at trends in several detonation

properties for metalized PBX9501. In this section a detailed description of the multi-

phase code will be presented. Also, the methodology that will be utilized to run the

simulations and how the data will be analyzed.

3.2 Multi-Phase Code Modeling

To properly evaluate the effects of aluminum metal particulates in multi-phase

explosives, this research will use a 1-D multi-phase computational numerical method

code, MPEXS, to simulate the explosion by predicting thermomechanical flow field

properties at the macroscopic level. The MPEXS code utilized for this research

was developed by Dr. Michael Crochet, a computational researcher at the Munitions

Directorate of AFRL. The MPEXS code is an evolving code that will be continuously

modified to provide better explosive parameters and ease of use by Department of
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Defense (DOD) users. The main goal of this thesis is to use Dr. Crochet’s code to

evaluate the effects of aluminum in PBX9501, a multi-phase explosive. Other goals

are to test the accuracy and performance of the code and provide suggestions to

AFRL.

This section will provide an explanation of how the fundamental equations of state

were derived for the MPEXS hydrocode. It will provide a description of the relevant

input files and subroutines files that the user will modify, how the MPEXS code is

executed, and the output files it produces. All other subroutines and equations asso-

ciated with the code are described in more detail in Dr. Crochet’s Ph.D. dissertation

[5]. “The code is intended to provide the end user with some flexibility in prescrib-

ing equations of state, burn models, and other constitutive relations by utilizing a

modular source code structure, where only a limited number of subroutines require

user interaction [6].” This “beta” version of the MPEXS hydrocode will be contin-

uously modified until a final version is user friendly and provides the most accurate

simulation results for metalized explosives.

There are different models that could be utilized to simulate explosive reactions.

The One-Phase Model simulates simple explosions and provide overall flow properties

but no information is provided on what occurred in the gas or solid phases. The

Two-Phase Model provides flow properties for both the solid and gas phase of the

explosion. The Two-Phase Model is utilized for this research to run simulation on

simple explosive reactions like PBX9501 with no aluminum particulates. A more

complicated model like the Multi-Phase Model with N Solid Components is utilized

for this thesis when running simulations with aluminum particulates. The Multi-

Phase Model allows the simulation of explosives with more than one solid phase, that

is, either multiple solid explosive compounds or an explosive solid compound with a

solid metal compound. The following sections provide a more detailed description of
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the different models to include the derivations of the systems of equations for each.

3.2.1 One-Phase Model

The one-phase model can predict flow properties of simple explosives at both the

macro and micro scale. Macro scale is when objects can be seen with the naked eye

and micro scale is when objects need a magnification device to see them more clearly.

A simple explosive is composed of the explosive material and the gas produced during

the reaction. This model follows the basic equations of conservation for inviscid and

adiabatic flow. The conservation equations utilized for the one-phase 1-D model

are: Equation 10 conservation of mass, Equation 11 conservation of momentum,

and Equation 12 conservation of energy [5]. Mass, momentum, and energy is not

exchanged between the gas/solid mixture and the environment. Viscosity and thermal

conductivity can be ignored because it occurs over a longer time scale than that of

an explosion, which occur in a matter of microseconds. Since viscosity and thermal

conductivity are ignored, the flow can be described by the Eulerian Conservation

Equations 10–12 below:

∂ρ

∂t
+

∂

∂x
(ρ u) = 0 (10)

∂

∂t
(ρ u) +

∂

∂x

(
ρ u2 + P

)
= 0 (11)

∂

∂t

(
ρE
)

+
∂

∂x

[
ρ

(
uE +

uP

ρ

)]
= 0 (12)

where x is position, t is time, ρ is mixture density, u is velocity, P is pressure, and E

is total specific energy.

In order apply the Euler equations to this system, an EOS must be utilized to
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close the system. Equation 13 below is a caloric EOS, where specific internal energy

is a function of both density and pressure.

e = e(ρ, P ) (13)

where e is the mixture specific internal energy.

3.2.2 Two-Phase Model

The two-phase model is similar to the one-phase model in that both are for simple

explosive and use the conservation equations, but now both phases must me consid-

ered. For the two-phase model, a simple reactant/product mixture composes two

phases, a solid and a gas phase. The conservation equations are then separated for

each component. The volume fraction (φ) of each component is included in the equa-

tions. Throughout the report both mass fraction (λ) and φ are utilized to describe the

quantity of aluminum within the high explosive material. Both can be calculated by

using a ratio of densities of the materials in the explosive mixture. BN formulated a

system of equations for basic two-phase flow explosive modeling, shown by Equations

14–20 [3].

The terms on the right side of Equations 14–19 are called “source terms”. The

mass source term (C) indicates the mass exchange between the solid and gas phase,

the momentum source term (M) indicates the momentum exchange between phases,

and the energy source term (E) indicates the energy exchange between phases. The

conservation of mass equation for the solid phase, Equation 14, has a positive C and

the conservation of mass equation for the gas phase, Equation 15, has a negative C.

These opposite terms between the solid and gas phase indicate that what is gained

by one phase must be lost by the other phase or vice versa to maintain conservation.

The relationship between phases is applied to the six conservation equations; Equation
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14–15, Equation 16–17, and Equation 18–19.

∂

∂t
(φsρs) +

∂

∂x
(φsρsus) = C [3] (14)

∂

∂t
(φgρg) +

∂

∂x
(φgρgug) = −C [3] (15)

∂

∂t
(φsρsus) +

∂

∂x
(φsρsu

2
s + φsPs) =M [3] (16)

∂

∂t
(φgρgug) +

∂

∂x
(φgρgu

2
g + φgPg) = −M [3] (17)

∂

∂t
(φsρsEs) +

∂

∂x

[
φsρsus

(
Es +

Ps

ρs

)]
= E [3] (18)

∂

∂t
(φgρgEg) +

∂

∂x

[
φgρgug

(
Eg +

Pg

ρg

)]
= −E [3] (19)

where x is position, t is time, φs is solid volume fraction, φg is gas volume fraction,

ρs is solid density, ρg is gas density, us is solid particle velocity, ug is gas particle

velocity, Ps is solid pressure, Pg is gas pressure, Es is solid total specific energy, and

Eg is gas total specific energy. The subscripts s indicates the solid components and

subscript g indicates the gas components.

Equation 20 relates the volume fraction exchange in the reaction. The compaction

source term (F) associates the inert pore collapse of the granular material during the

reaction. Equation 21 states that the volume fraction of solid and gas components

must equal to one, assuming there is no other materials or massless voids in the

mixture.

29



∂φs

∂t
+ us

∂φs

∂x
= F +

C
ρs

[3] (20)

φs + φg = 1 (21)

Just like the one-phase model, an EOS for each phase is needed to close the system

of Equations 14–20. These EOS are given by Equation 22 and 23.

es = es(ρs, Ps) (22)

eg = eg(ρg, Pg) (23)

where es is the solid specific internal energy and eg is the gas specific internal energy.

In order to develop an accurate model the formulas for the source terms, C, M,

and E must be determined. The formulations for the source terms were derived from

the Second Law of Thermodynamics by Bdzil et al. [13]. These source term formulas

are shown by Equations 24–26. In these source term equations there are two different

parameters of interest. The relaxation coefficients and the partitioning parameters.

Relaxation Coefficients

The relaxation coefficients “control the rate at which the solid and gas pressures,

velocities, and temperatures equilibrate [6].” The compaction viscosity (µsg) is uti-

lized to determine the rate at which the mixture mechanically equilibrates, the drag

coefficient (δsg) is utilized to govern the rate of kinematic equilibration, and the

heat transfer coefficient (Hsg) is utilized to dictate the rate of thermal equilibration

[6]. In a piston impact test, when the piston hits the explosive mixture a detonation

wave forms and travels throughout the mixture. At any position in the mixture, after

the detonation wave passes the mixture will relax to a lower state. The relaxation
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coefficients are estimated from explosive empirical relaxation data. The larger these

coefficients are, the faster the mixture will equilibrate after the wave passes. The

smaller these coefficients are, the longer it will take to equilibrate.

Partitioning Parameters

Partitioning parameters are similar to the relaxation coefficients in the way that they

describe the interaction between phases like solid-gas. The partitioning parameters

determine the fraction of thermal energy exchange that occurs during different pro-

cesses like the compaction, chemical reaction, drag, and other additional dissipative

processes [6]. The compaction partitioning function (csg) determines the thermal

energy exchange due to the compaction process, the chemical reaction partitioning

function (ξsg) determines the thermal energy exchange due the chemical reaction pro-

cess, and the drag partitioning function (αsg) determines the energy exchange due to

the drag produced by the production of combustion gas [6]. It is recognized “that

the original BN model implicitly assigned all dissipation energy from some process

to either the gas or solid, which results in nonphysical phase temperature increases.

[6]” Equations 24–26 are the formulations for the source terms were derived from the

Second Law of Thermodynamics by Bdzil et al. [13].

F =
1

µsg

φsφg(Ps − βs − Pg) [13] (24)

M = Pg
∂φs

∂x
+

[
1

2
(us + ug)− αsg(ug − us)

]
C − δsg(us − ug) [13] (25)
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E = usMs − [csg(Ps − βs) + (1− csg)Pg]F −
[

1

2
αsg(us − ug)2 +

u2
s

2

]
C

+

{
ξsges + (1− ξsg)

[
eg + Pg

(
1

ρg
− 1

ρs

)]}
C + αsgδsg(us − ug)2

+Hsg(Tg − Ts)

[13] (26)

where F is the compaction source term, M is the momentum source term, C is the

mass source term, E is the energy source term, µsg is the compaction viscosity, δsg is

the drag coefficient, Hsg is the heat transfer coefficient, αsg is the drag partitioning

function, csg is the compaction partitioning function, ξsg is the chemical reaction

partitioning function, βsg is the inter-granular stress from particles, Ts is the solid

temperature, Tg is the gas temperature, and subscript sg indicates the relaxation

process between the solid and gas phases.

3.2.3 Multi-Phase Model with N Solid Component

The multi-phase model is derived from the same system of equations as the two-

phase model but with the addition of more equations to represent the other added

components. The model provides the means to perform simulations with mixtures

with multiple solid components. A multiple solid component can be several different

combinations of solids. One combination can be a mixture of different particle sizes

of the same explosive. Another combination can be a mixture of different explosive

components. The combination this research is concerned about is the mixture of

explosive and metal mixture. The conservation equations will be the same as the

two-phase model but there will be three equations for the gas: conservation of mass,

momentum, and energy. There will also be three conservation equations for each solid

and one volume fraction equation for each solid. The total number of equations need

can be summarized by 3+4N equations, where N is the number of solid components
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[6]. For example, this research will focus on one explosive (PBX9501) and one metal

solid (Al) mixture that will have a system of eleven conservation equations because of

the two solids (N=2). Equations 27–33 were derived from the BN formulated system

of equations for this multi-phase model with N number of solid components [3].

∂

∂t
(φiρi) +

∂

∂x
(φiρiui) = Ci [3] (27)

∂

∂t
(φgρg) +

∂

∂x
(φgρgug) = Cg [3] (28)

∂

∂t
(φiρiui) +

∂

∂x
(φiρiu

2
i + φiPi) =Mi [3] (29)

∂

∂t
(φgρgug) +

∂

∂x
(φgρgu

2
g + φgPg) =Mg [3] (30)

∂

∂t
(φiρiEi) +

∂

∂x

[
φiρiui

(
Ei +

Pi

ρi

)]
= Ei [3] (31)

∂

∂t
(φgρgEg) +

∂

∂x

[
φgρgug

(
Eg +

Pg

ρg

)]
= Eg [3] (32)

∂φi

∂t
+ ui

∂φi

∂x
= Fi +

Ci
ρi

[3] (33)

where φi is i-th solid volume fraction, ρi is i-th solid density, ui is i-th solid particle

velocity, Pi is i-th solid pressure, and Ei is i-th solid total specific energy. Other

expressed symbols with a subscript i denote parameters of the solid components.

The saturation equation, Equation 34, shows the volume fractions for all the i-th

solids and the volume fraction for the gas component equals to one.

33



φg +
N∑
i=1

φi = 1 (34)

The “source terms”, C,M, E , for all the components are summed by Equations 35–

37. These equations indicate there is conservation between all sources. For example,

the mass sources, C, are conserved between gas and all solid components.

Cg +
N∑
i=1

Ci = 0 (35)

Mg +
N∑
i=1

Mi = 0 (36)

Eg +
N∑
i=1

Ei = 0 (37)

The i-th solid mass source term (Ci), i-th solid moment source term (Mi), and

i-th solid energy source term (Ei) terms can be separated into two contributions;

the solid/gas interaction contributions denoted by subscript ig and the solid/solid

interaction contribution denoted by subscript im [6]. Equations 38–40 below show

the solid/gas and solid/solid interaction contributions to Ci, Mi, and Ei.

Ci = Cig +
N∑

m=1

Cim (38)

Mi =Mig +
N∑

m=1

Mim (39)

Ei = Eig +
N∑

m=1

Eim (40)

The metal utilized for this research will be aluminum and will be treated as a
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non-reactant metal. Since non-reactant Al will be utilized the terms that include

any interaction with Al will not be utilized. In the MPEXS code Al is denoted by

subscript m for metal and the explosive is denoted by s. Applying this notation to

Equations 38–40 will reduce them to:

Ci = Csg, Mi =Msg, Ei = Esg

3.2.4 Nozzling Sources

The system of equations formulated by BN for conservation of mass, momentum,

and energy of explosive reactions can be written in a general form, shown by Equation

41 [6]. “The mixture entropy inequality gives rise to terms that are proportional to

the volume fraction gradient ∂φ/∂x [6].” These non-conservative terms which are

multiplied by the volume fraction gradients are known as nozzling sources (gi).

∂q

∂t
+

∂

∂x
[f(q)] =

N∑
i=1

gi(q)
∂φi

∂x
+ s(q), (41)

where q is the vector of unknown variables such as φi, ρi, ui, Ei, f is a flux vector as

a function of q, s is a vector of algebraic interphase sources as a function of q.

The left side of Equation 41 are the Eulerian conservation equations and the right

side are the source term equations. “The approximations resulting from the centered

scheme introduce additional numerical error into the solution. This is due to the

difficulties associated with discretizing the nozzling sources, which continues to be an

active area of mathematical research.[6]” If the nozzling terms are too precise then it

becomes computationally expensive, if they they are not precise enough then it will

result in a poor approximation.
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3.3 Multiphase Explosive Simulation Code Files

3.3.1 Input Files

The MPEXS code is written in the Fortran programming language. The code is

composed of several routine and subroutine files. The purpose of the MPEXS code

is to allow the user to input the explosive simulation parameters in as few files as

possible. The latest version of the MPEXS code has reduced the number of input

files needed to run a simulation. Most of the inputs are done in the maininput.txt

file but there are other inputs that are done in other files. Brief descriptions are given

below.

3.3.1.1 maininput.txt

The maininput.txt file is is the principal file where most of the simulation

changes will be made. The main input file is divided into two sections; Simula-

tion Inputs and Initial Conditions. The main inputs that will be modified are the

number of solid species (Nsp), number of discrete computational cells (N x), left and

right domain boundary locations (L1) and (L2), initial reference piston speed (vf0),

final simulation time (tfinal), average component grain diameter (dmean), and the

types of equations of state (eostypes). The initial conditions section allows the user

to modify the volume fraction φ of the solids, the density ρ and the pressure P for

both the gas and solids.

The MPEXS code can run both neat and metalized explosives. The term “neat”

is utilized to refer to homogeneous explosives with no metal particulates. For neat

explosive simulations the number of solid species Nsp = 1. By doing so, the code will

neglect any aluminum properties in the input files. For metalized explosives set Nsp

= 2.

The current version of the MPEXS code has five different equations of state; Ideal
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(0), Virial (1), Mie-Grüneisen (2), Wide-Ranging-Reactant (4), and Wide-Ranging-

Product (5). The Ideal EOS are applied to ideal gases in many flow regimes. Virial

EOS are applied to non-ideal gases like detonation products of explosives. Mie-

Grüneisen EOS applies relationships between pressure and volume of solids like the

metal particulates.

The equations of state can be selected on line # 52 of the maininput.txt file. The

unreacted explosive PBX9501 will use the Wide-Ranging-Reactant equations of state,

number (4). The granular aluminum will use the Mie-Grüneisen equations of state,

number (2). The gaseous combustion products will use the Wide-Ranging-Product

equations of state, number (5). When running cases with pure PBX9501 explosive

without aluminum, the equations of state are called in line # 52. This is done by

setting eostypes = 4, 5, 0. The first number is the unreacted explosive, the second

number is the gaseous products, and the third number is a place holder. The third

number will not be read because Nsp is set to 1 for pure explosive simulations. When

running cases with PBX9501 and aluminum, line # 52 will be set to eostypes = 4, 2,

5. The first number is the unreacted explosive, the second number is the aluminum,

and the third number is the gaseous products.

3.3.1.2 timemarch.f90

This subroutine steps the solution forward in time using a 2nd order Strang split-

ting method, which alternates between the convective and local source portions of

the solver [6]. The most input in this file is the frequency data is stored. The default

is that a fort.xxx file is saved every 10 time steps. This input is found in line # 64

that reads as follows: “IF (MOD(j, 10) == 0.OR.j == Nts)THEN”. An analysis

will be performed to determine if the amount of data collected is worth the increase

in accuracy.
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3.3.1.3 ppoutput.txt

The post processing output file, ppoutput.txt, is a self generated file needed to

calculate the detonation wave speed. This file is stand-alone and can be modified

to determine the wave speed at different times intervals by changing the range of

fort.xxx files. If the MPEXS code stops before the run is completed, the post

processing subroutine will not generate the detonation wave speed data. In that case,

the inputs can be manually entered and be able to calculate detonation wave speeds.

The following are the inputs; number of discrete grid points, number of condensed

phases, number of output text files, number of time steps, piston velocity, and domain

length.

3.3.1.4 postprocess.f90

This subroutine performs the detonation wave speed calculations after all the out-

put files have been created. This subroutine is can also be utilized as a stand-alone

program if the output files have already been created. One input is the threshold pres-

sure. This threshold pressure is utilized to differentiate between a passing detonation

wave and a compaction wave. When the threshold is meet, the leading wave position

at each recorded time will be stored in the wavespeeddata.txt file. The threshold

pressure requires some trial and error to set it properly for detonation waves. If too

large then no wave will be detected and if too low then it will detect any pressure rise

even if it is not a detonation wave. Another input is the number of points utilized for

the linear fit that determines the detonation wave speed. The more points utilized the

better the linear fit. If too many points are use the result will be inaccurate because

non steady state points will be utilized.

38



3.3.2 Execution Files

The MPEXS hydrocode is executed by using the Linux command terminal. The

binscript.sh shell script is utilized to execute all the subroutines and input files. As

the code runs, the current time and time step is displayed on the terminal screen.

The data displayed on the terminal screen is useful to determine if the code is running

properly. The data is saved in fort.xxx files every 10 time steps which is the default

but it can be changed under the timemarch.f90 file.

3.3.3 Output Files

The data is saved to output files named fort.xxx. The“xxx” is a number sequence

that begins at 100 and increases by one for each set of data. Each set of data is

collected every 10 time steps and it depicts what is happening at that time step.

The fort.101 file will contain data at the 20th time step, fort.102 will contain data

at the 30th time step, and so on. The fort.xxx files contain columns of data for

time, position, density, pressure, temperature, volume fraction, and particle velocity.

Table 1 shows the names corresponding to each column of data for a neat explosive

simulation which includes the explosive solid and gas reaction products. Table 2

shows the names corresponding to each column of data for a metalized simulation

which include the explosive solid, the metal solid, and the gas reaction products.

Table 1. Fort.xxx Columns for Two Components (Explosive solid, Gas products)

1 2 3 4 5 6 7 8 9 10 11 12

t x ρe ρg Pe Pg Te Tg φe φg ue ug

where t is time in microseconds, x is position in millimeters, ρ is density in kilo-

grams per meters cubed, P is pressure in Pascals, T is temperature in Kelvin, φ is
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volume fraction, and u is particle velocity in kilometers per second. Subscript “e”

represents explosive solid and “g” represents gas products.

Table 2. Fort.xxx Columns for Three Components (Explosive solid, Metal solid, Gas

products)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

t x ρe ρm ρg Pe Pm Pg Te Tm Tg φe φm φg ue um ug

where t is time in microseconds, x is position in millimeters, ρ is density in kilo-

grams per meters cubed, P is pressure in Pascals, T is temperature in Kelvin, φ is

volume fraction, and u is particle velocity in kilometers per second. Subscript “e”

represents explosive solid, “m” represents metal solid, and “g” represents gas prod-

ucts.

The wavespeeddata.txt file is a compilation of data collected from all the

fort.xxx files. The time and position of the shock wave is collected from each

fort.xxx file by setting a threshold pressure to detect when the shock wave has passed.

The time and position are saved into a separate file named wavespeeddata.txt. Ta-

ble 3 below provides an example of the data contained in the wavespeeddata.txt

file. The data is stored in four columns. The first column it the time when the shock

wave passes, the second column is the position of the shock wave in the explosive par-

ticles, the third column is the position for the metal particles, and the forth column

is the position for the gas particles.

Table 3. Wavespeeddata.txt Example

t(µs) xe(mm) xm(mm) xg(mm)

0.34355E2 0.1353 0.1359 0.1346

0.34477E2 0.1365 0.1365 0.1359
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In some cases a detonation will not occur and only the wave due to the impact

of the piston will go through. This wave is called the compaction wave. Detonation

wave velocities are much larger than compaction wave velocities and will be noticeable

when a detonation does not occur. The goal is to choose a velocity threshold large

enough that will detect the detonation wave but ignore the compaction wave. The

wavespeeddata.txt data provides the time and position of the wave. When plotted

the detonation wave velocity for the explosion can calculated with the slope of the

line ∂x/∂t. Since the piston face is utilized as the reference, the piston velocity must

be added to the wave velocity. The piston and wave velocities will give the detonation

velocity.

3.4 Simulation Run Setup

In order to study the effects of aluminum particulates on the detonation veloc-

ity of explosives, computational simulations must be performed with various particle

size and mass fractions. This research will focus on the high explosive compound

PBX9501. The first step is to test the fidelity of the MPEXS code on a simple ex-

plosive like PBX9501 with no aluminum particulates, this will be referred as neat

PBX9501. If the simulation results for neat PBX9501 have a good correlation with

empirical results, then the second step is to run simulations with aluminum particu-

lates. Comparing simulation data to empirical data does not provide any benefit to

this research due to the complexity of plastically bonded explosives like PBX9501.

The detonation properties are different for every batch made due to the purity and

curing process of the binding material can vary from batch to batch. Instead of com-

paring simulation data to empirical data, this research will look at the stability of the

code by running several tests to determine consistency and limits of the code. This

research will look at trends in several detonation properties for metalized PBX9501.
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AFRL Munitions Directorate currently uses spherical aluminum particulates man-

ufactured by Toyal America Inc [12] in explosive mixtures being tested. Toyal manu-

factures a range of aluminum powers in different diameters for aerospace and military

applications. Toyal manufactures six different sized aluminum powders with a mean

diameter D50 ranging from 9 to 34 microns [12]. The six different diameters will be

utilized as a varying parameter for the computational simulations of this research.

Another parameter that will be varied is the mass fraction (λ) of aluminum to

the solid explosive. Increasing the mass fraction of the aluminum will decrease the

mass fraction of the solid explosive. A decrease in the amount of explosive available

for the reaction will affect detonation properties such as detonation velocity, run-to-

detonation time, and run-to-detonation location. Three different mass fractions will

be studied for this research; 10, 15, and 20 percent.

Figure 5 below shows the two varying parameters that will be studied, aluminum

mass fraction and aluminum mean diameter. The first set of simulations that will

be performed will be with neat PBX9501. The data from these simulations will

utilized verify that the equations of state in the MPEXS hydrocode are correct. The

verification of the MPEXS code can be done by comparing run-to-detonation results to

other hydrocodes. The next set of simulations will consider different cases of PBX9501

with aluminum. The six aluminum diameters will be tested for each aluminum mass

fraction. For example, the aluminum mass fraction of 10 percent will be tested with

9, 13, 19, 23, 29, and 34 micron diameter. The same simulations will be performed

for 15 and 20 percent.
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Figure 5. Varying Parameters for Simulation Runs

3.5 Neat Explosive Simulations

Two things must be considered before the study of the effects of metalized ex-

plosives; the validity of the MPEXS code and a baseline of initial parameters to be

utilized. In this section, different computational cell quantities and different piston

speeds will studied with the purpose to determine a baseline of initial parameters to

be utilized for metalized explosives.

For the neat explosive simulations, data will be collected at different piston speeds

(up) and at different number of discrete computational cells (Nx) for both PBX9501

and HMX explosives. Simulations with small number of computational cells will

run in a shorter time but the resolution will be lower. The lower resolution might

miss important data points specially at the location of the shock wave. Simulations

with very large number of computational cells will provide a higher resolution with

more data points around the shock but will take longer to run. Besides run time

and resolution, the amount of data output per simulation is an another important
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consideration. The more computational cells the more output files the code will

produce. Simulation run time is not as important, but data output is important.

Therefore, a study will be performed to determine if the higher resolution simulations

are worth the data each simulation will output based on the percent difference for

each number of computational cells. Detonation properties can vary depending on

the impact speed of the piston. A study will be performed to determine what piston

speed will provide the best results and what piston speeds will cause the code to fail.

For the two initial studies, computational cells and piston speed, a low, medium,

and higher limit will be tested to gauge the detonation properties of neat explosives.

For computational cell, runs with 800 and 2000 cells will be the lower and higher

limits to be tested. For piston speed, runs with 0.5, 1.0, 2.0 km/s will be tested.

Both the computational cell quantity and piston speed studies are described in more

detail in the following sections.

3.5.1 PBX9501 at Different Computational Cell Quantities

Two different number of discrete computational cells will be considered for each

explosive, 800 and 2000 cells. The purpose is to determine the amount of cells needed

to obtain good results and if the run time and data storage of the simulation is worth

the resolution. In this case, the explosive PBX9501 was simulated at three different

piston speeds and the two computational cell quantities with the focus of comparing

results for 800 and 2000 cells. Larger numbers of computational cell sizes such as 2400,

2500, 3000 cells were tested but the code did not run with the current parameters. It

is believed that computational limits on the computer were reached and the computer

aborts the code. This issue will be discussed in Results chapter after the code is run

on the Air Force Institute of Technology (AFIT) computer cluster and the results are

analyzed. There are five detonation properties that are considered through out this
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research; density, pressure, temperature, particle velocity, and volume fraction of the

solids and gas.

When the simulation was run at a piston speed of up = 0.5 km/s the results

did not seemed to vary from 800 to 2000 computational cells for density, pressure,

temperature, particle velocity, and volume fraction. Simulations with 800 cells took

around 13 minutes to run and stored about 746 MB. Simulations with 2000 cells took

around 78 minutes to run and stored about 4.6 gibibyte (GiB). As a reference, 1.0

gibibyte equals 1.07374 gigabytes. These run times and storage sizes are for neat

explosive, where no Al is present. Figure 6a shows pressure versus position for 800

computational cells and Figure 6b shows the same plot for 2000 computational cells.

As seen in the figures the plotted data looks identical. When the data is compared,

it can be seen that there is a 1.5% difference between 800 cells and 2000 cells. The

number of computational cells utilized for 0.5 km/s makes a very small difference

in the results. A generalized conclusion about the effects of computational cells can

not be made at this point based on the results because the detonation did not reach

steady state. There are two options, either run the simulation for a longer time or

increase the piston impact speed. To keep the position domain consistent, faster

piston speeds were considered and are discussed in the next paragraph.

45



0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5
Pressure vs Position

Position (mm)

P
re

ss
ur

e 
(G

P
a)

 

 

P
e

P
g

(a) PBX9501 up0.5 800cells

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5
Pressure vs Position

Position (mm)

P
re

ss
ur

e 
(G

P
a)

 

 

P
e

P
g

(b) PBX9501 up0.5 2000cells

Figure 6. PBX9501 P vs X Piston Speed = 0.5 km/s

Since steady state was not reached within the position domain for piston speed

of 0.5 km/s, the piston speed was increased. Simulations with piston speeds of 1.0

and 2.0 km/s were performed for PBX9501. The focus is on the grid resolution

therefore the same computational cells, 800 and 2000, were utilized for the faster

piston speeds. 800 and 2000 computational cells were utilized for the simulations

with faster piston speeds. Since the results for 1.0 km/s and 2.0 km/s are similar

when varying computational cell sizes, only the 2.0 km/s case will be presented and

discussed here. The results for density, pressure, particle velocity, and volume fraction

were almost identical when 800 and 2000 computational cells are compared. For 1.0

and 2.0 km/s the detonation reached a steady state. Figure 7a and Figure 7b show

pressure vs position for both cases. Comparing the results for the two cell sizes it is

calculated there is a 1.0% difference in pressure results, 0.8% difference for particle

velocity, 1.5% difference for density, and 0.0% difference for detonation velocity. The

difference is small enough that it can be concluded that computational cells sizes do

not affect these detonation parameters.
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Figure 7. 9501 P vs X Piston Speed = 2.0 km/s

As seen in Figure 8a and 8b, the temperature of the explosive particles has a higher

spike when 2000 computational cells are utilized versus the 800 cells. The thin region

behind the detonation wave is typically very small compared to the grid sizes utilized.

The more computational cells utilized, the finer the grid size gets and more data can

be captured in this region. The case with 2000 cells provides more detail in this region

and shows that the temperature is actually higher. When less computational cells are

utilized, some of the higher temperature data points are skipped, therefore showing

a lower temperature. Another observation for temperature vs position is that the

transition to equilibrium after the shock passes is smoother with 2000 computational

cells. The smoother transition is also due to the increase of data points per unit

distance.
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Figure 8. 9501 T vs X Piston Speed = 2.0 km/s

The results showed there was repeated trends and consistent results between the

two different computational cell sizes. There were no abnormal results between the

two cell sizes. These results help validate that the code is providing consistent and

predictable results.

3.5.2 HMX at Different Computational Cell Quantities

Neat explosive HMX was also studied at different piston speeds and two different

computational cell quantities, 800 and 2000 cells. To compare both the computational

cell quantities a piston speed of 0.5 km/s was considered first. The simulation of

neat HMX with a piston speed of 0.5 km/s showed a 2.2% difference between 800

and 2000 cells in particle velocities, 0.7% difference in temperatures, 1.7% difference

in pressures, 0.3% difference in densities, and 2.3% difference in detonation velocities.

Figure 9 shows a comparison between 800 and 2000 cells for temperature vs position

of HMX. Both the HMX and PBX9501 simulations at 0.5 km/s showed that there

is a very small difference between 800 and 2000 computational cells. Based on the

results for a piston speed of 0.5 km/s, the detonation did not reach steady state.
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No conclusions can be made from these results about the different cell quantities.

To make a good comparison of computational cell sizes, higher piston speeds were

considered.
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Figure 9. HMX T vs X Piston Speed = 0.5 km/s

The results of the simulations for neat HMX with piston speed of 2.0 km/s had less

than 2% difference from 800 to 2000 computational cells for density, pressure, particle

velocity, and volume fraction. The only parameter that displayed a difference between

800 to 2000 cells was temperature as seen in Figure 10. For the 2000 computational

cell simulation, the temperature reached a higher temperature and had a smoother

transition behind the shock. Like the PBX9501 simulation, the smoother transition

and higher temperature is due to the larger number of data points per unit length

when 2000 cells are utilized.
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(b) HMX up2.0 2000cells

Figure 10. HMX T vs X Piston Speed = 2.0 km/s

Based on this study for neat explosive simulations, it is shown that 2000 cells will

increase the resolution by adding more data points, but it will require more data stor-

age. 800 cells provided less precise results but it required less storage. The difference

in the results between 800 and 2000 cells is within 1% to 2%. Running the simulations

with 800 cells is a better option for faster and quick checks of detonation properties

because it will require less data storage. The larger data storage of 2000 cells might

be an issue with the metalized explosive simulations but with neat explosives is not

a issue. Therefore, 2000 cells will be utilized for studying the different speeds of neat

explosives in the next section.

3.5.3 PBX9501 at 3 Different Piston Speeds

From the previous study it was determined that a good starting resolution was

2000 computational cells. The following simulations will look at the effect of different

piston speeds to determine the best piston speed for the metalized explosive simula-

tions. It is important to get a good understanding of the neat explosive detonation

properties before the addition of metal particulates.
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Three different piston speeds were chosen for the following simulations, all with

2000 computational cells. Piston speeds of 0.5 km/s, 1.0 km/s, and 2.0 km/s. All five

detonation properties were compared at each of the piston speeds. The detonation

properties are: density, pressure, temperature, particle velocity, and volume fraction.

Figure 11 plots the volume fraction vs position for the three different piston speeds.

Figure 11a shows that volume fraction does not transition from explosive solid to gas

for the up = 0.5 case. The explosive volume fraction should exponentially decay to

zero and the gas volume fraction should exponentially increase to the total solids

volume fraction as shown in Figures 11b and 11c. As discussed earlier, for piston

speed of 0.5 km/s the detonation wave is developing and does not reach steady state

for the time and position domain considered. Figure 11c is a good example of a

detonation wave that has reached its steady state. Figure 11b is almost at steady

state but not quite there. Steady state is reached when the explosive solid decays to

zero very sharply and does not change.
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Figure 11. PBX9501 Volume Fractions

The rise in density for the up = 0.5 km/s case is due to the compression wave

caused by the impact of the piston. The small rise in density indicates the piston

speed was not fast enough to reach steady state within the time and position domain.

Since steady state was not reached at up = 0.5 km/s, the piston speed was in-

creased to 1.0 km/s and 2.0 km/s. The results for up = 1.0 km/s and 2.0 km/s are

shown in Figure 12b and 12c. For these faster speeds it can be seen that a detonation

occurred because there is a larger increase in density as the shock wave passed. The
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peak density for the gas is 2437 kg/m3 at up = 1.0 km/s and 2484 kg/m3 at up =

2.0 km/s. The biggest difference between the two speed is the rate the rarefaction

wave reaches equilibrium. The up = 2.0 km/s simulation reaches equilibrium at a

faster rate and the up = 1.0 km/s simulation at a slower rate. Figure 12b shows a

smoother more gradual decrease to the equilibrium state and Figure 12c a sharper

drop to equilibrium state.
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(a) Density vs X up = 0.5
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(b) Density vs X up = 1.0
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(c) Density vs X up = 2.0

Figure 12. PBX9501 Density vs X 3 Speeds

Pressure versus position is plotted for the three piston speeds and the results are
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shown in Figure 13. The same patterns as density are seen for pressure, were steady

state is not reached at up = 0.5 km/s and a steady state detonation occurs for the

faster piston speeds. The peak pressure for the gas is 38.86 GPa at up = 1.0 km/s and

42.64 GPa at up = 2.0 km/s. Piston speed directly affects the detonation properties

like pressure. When the piston speed was increased, the pressures also increased.

In Figure 13b, the rarefaction wave for up = 1.0 km/s has a more gradual drop in

pressure. Figure 13c shows the rarefaction wave for up = 2.0 km/s has a sharper

drop in pressure and then equilibrates.
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(a) Pressure vs X up = 0.5
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(b) Pressure vs X up = 1.0
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(c) Pressure vs X up = 2.0

Figure 13. PBX9501 Pressure vs X 3 Speeds
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The relationship between the three speeds is the same the remaining properties

like temperature, particle velocity, and volume fraction. The correlation between

piston speed and detonation properties is that as piston impact speed increases, the

detonation properties increase. Higher piston speeds resulted in higher pressure,

temperature, particle velocity, and detonation velocity. For brevity of the report

some of the key detonation property values for PBX9501 at the three piston speed

are shown in Table 4.

Table 4. Neat PBX9501 Detonation Properties for Different Piston Speeds

Piston Speed,
up (km/s)

Pressure,
Pg (GPa)

Temperature,
Tg (K)

Part. Velocity,
Ug (km/s)

Det. Velocity,
D (km/s)

0.5 2.07 969 0.576 2.252
1.0 38.86 29170 3.357 7.842
2.0 42.64 33280 3.594 7.842

3.5.4 HMX at 3 Different Piston Speeds

The same analysis was performed for the neat HMX at three different piston

speeds; 0.5 km/s, 1.0 km/s, and 2.0 km/s. When the piston speed was increased,

neat HMX had the detonation properties trends as neat PBX9501. As the piston

speed increased the pressure, temperature, particle velocity, and detonation velocity

also increased. A summary of the results for neat HMX is on Table 5.

Table 5. Neat HMX Detonation Properties for Different Piston Speeds

Piston Speed,
up (km/s)

Pressure,
Pg (GPa)

Temperature,
Tg (K)

Part. Velocity,
Ug (km/s)

Det. Velocity,
D (km/s)

0.5 2.35 1115 0.585 2.629
1.0 33.38 22740 2.716 7.799
2.0 36.76 27760 2.869 7.968
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3.5.5 Neat PBX9501 and Neat HMX Detonation Properties Compar-

ison

The previous two sections looked at both neat PBX9501 and neat HMX individu-

ally to determine how computational cells and piston speed affected detonation prop-

erties for each explosive. This section will focus on comparing detonation properties

between PBX9501 and HMX at a piston speed of 2.0 km/s and 2000 computational

cells. If the code is running correctly then the detonation properties for PBX9501

and HMX should have similar trends.

Figure 14 below plots the the density vs the position for both PBX9501 and HMX

at piston speed of 2.0 km/s and 2000 computational cells. The density of the explosive

material as the detonation wave passes is higher for PBX9501. The stable density

values of the rarefaction wave for PBX9501 are higher as well.
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Figure 14. HMX and 9501 ρ vs X Piston Speed = 2.0 km/s

Figure 15 plots the pressure vs position of both HMX and PBX9501. The pressure

for PBX9501 is higher than the pressure for HMX. The peak pressure for PBX9501

is higher than that of HMX at piston speed of 2.0 km/s, 2000 cells.
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Figure 15. HMX and 9501 P vs X Piston Speed = 2.0 km/s

Figure 16 plots the temperature vs position of both HMX and PBX9501. The

temperature for PBX9501 is higher than the temperature for HMX. The peak tem-

perature for PBX9501 is higher than that of HMX at piston speed of 2.0 km/s, 2000

cells.
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Figure 16. HMX and 9501 T vs X Piston Speed = 2.0 km/s

Figure 17 plots the velocity vs position of both HMX and PBX9501. The velocity
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for PBX9501 is higher than for HMX. The peak particle velocity for PBX9501 is

higher than that of HMX at piston speed of 2.0 km/s, 2000 cells.
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Figure 17. HMX and 9501 u vs X Piston Speed = 2.0 km/s

Figure 18 plots the volume fraction vs position of both HMX and PBX9501. The

volume fraction for both HMX and PBX9501 are very similiar if not the same. The

detonation for both explosives are at steady-state and the volume fractions should be

at zero for the explosive solid and at one for the gas products after the detonation

wave has passed.
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(b) 9501 up2.0 2000grid

Figure 18. HMX and 9501 φ vs X Piston Speed = 2.0 km/s

Neat PBX9501 explosive is polymer bonded explosive that is composed of 95%

HMX and bounded together by 2.5% estane and other materials. The addition of

estane-based binder material in PBX9501 adds more fuel to the chemical reaction

and can be clearly seen in the stoichiometry equations. The stoichiometry calcula-

tions show that more fuel is available to the reaction due to the binder materials.

Detonation properties such as pressure, temperature, density, and particle velocity

are all affected by the addition of the binder material. This effect was seen in Figure

14 to Figure 18. The binder material retards the burn rate of the explosive and this

retardation makes the reaction last longer in which increases the detonation properties

like density, pressure, temperature, and particle velocity.

3.6 Metalized Explosive Simulations

3.6.1 PBX9501/Al at Different Computational Cell Quantities

A few cases with metalized PBX9501 explosive were done to determine the accu-

racy of the higher resolution simulations and how much data storage is needed for
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each metalized explosive simulation. Simulations with PBX9501 and aluminum were

performed at a piston speed of 1.5 km/s, 10% Al mass fraction, and 9µm and 34µm

Al particle diameter. Also, simulations at up = 1.5 km/s, 20% Al mass fraction, and

9µm Al particle diameter. These three simulations will cover a good range of the

cases that will be run for the results chapter.

Figure 19 below plots pressure vs position for 10% Al mass fraction and 9µm to

compare 800 and 2000 cell simulations. Figure 20 below plots temperature vs position

for 10% Al mass fraction at 9µm to compare 800 and 2000 cell simulations. As seen

in Figure 20, the gas temperatures rapidly increase to values outside the chart range.

This large spike in gas temperature are consequence of the computational model

utilized for the simulations. The large spike were also seen by other researchers like

Schwendeman, Wahle, and Kapila as described in Dr. Crochet’s dissertation [5].
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(a) PBX9501 10% 9µm up1.5 800cells
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(b) PBX9501 10% 9µm up1.5 2000cells

Figure 19. PBX9501 10% 9µm P vs X Piston Speed = 1.5 km/s
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Figure 20. PBX9501 10% 9µm T vs X Piston Speed = 1.5 km/s

A summary of the simulations performed to study the precision of higher com-

putational cells and the amount of storage needed per simulation are listed below in

Table 6 and Table 7. To describe each simulation in a shorter format, the following

naming convention is utilized, “PBX9501 10 9”. The first part is the name of the

explosive, the first number after the explosive name is the mass fraction of the alu-

minum in percent, and the last number is the diameter of the aluminum in microns.

Other added descriptions are added to the name. The added description of “up1.5”

is the piston speed and “800cells” is the number of computational cells utilized.

Table 6 shows the percent difference between each simulation at 800 and 2000

computational cells. For the first simulation listed, PBX9501 10 9 up1.5, there is

a 1.5% average difference between 800 and 2000 cells for particle velocities, 23.4%

difference for temperature, 2.1% for pressure, 0.6% for density, and 0.5% for detona-

tion velocity. The other two cases are listed in the table. The largest difference is the

temperature but as described in the previous paragraph, the computational model

does not accurately predict the actual temperatures near the shock wave. With this

in mind, the focus will be on the other detonation properties. The other properties
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for PBX9501 10 9 up1.5, have percent differences below 2.1%. Besides the per-

cent difference for temperature, PBX9501 20 9 up1.5 has a large percent difference

in detonation velocity. The reason for the large percent difference compared to the

other cases is because the PBX9501 10 9 up1.5 800 cell simulation ended earlier

than the 2000 cell simulation. The next paragraph will look at how these differences

compare to the amount of storage needed per simulation.

Table 6. Difference Between 800 and 2000 Computational Cells

Part. Vel.
% Diff.

Temp.
% Diff.

Press.
% Diff.

Density
% Diff.

Det. Vel.
% Diff.

PBX9501 10 9 up1.5 1.5% 23.4% 2.1% 0.6% 0.5%
PBX9501 10 34 up1.5 1.4% 8.6% 1.9% 0.5% 0.5%
PBX9501 20 9 up1.5 2.3% 16.0% 1.7% 0.4% 5.1%

Table 7 below shows a comparison between the amount of storage needed for

the data of the simulation for 800 and 2000 computational cells. The first case

PBX9501 10 9 up1.5 at 800 cells outputted 2.9 gibibytes and 2000 cells outputted

23.7 gibibytes. The 2000 cell simulation requires 8.2 times more data storage capacity

than the 800 cell simulation. The 2000 cell simulation for PBX9501 10 34 up1.5

requires 6.5 times more data storage than 800 cells. The 2000 cell simulation for

PBX9501 20 9 up1.5 requires 7.7 times more data storage than 800 cells.

Table 7. Difference Between 800 and 2000 Computational Cells

Data
Output(GiB)

2000 vs 800
(Times Larger)

PBX9501 10 9 up1.5 800cells 2.9
PBX9501 10 9 up1.5 2000cells 23.7 8.2x
PBX9501 10 34 up1.5 800cells 2.6
PBX9501 10 34 up1.5 2000cells 17.0 6.5x
PBX9501 20 9 up1.5 800cells 1.5
PBX9501 20 9 up1.5 2000cells 11.5 7.7x

The average percent difference for all the detonation properties, except tempera-

ture, is 1.5%. The average data output for 2000 cell simulations is 7.5 times larger
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than for the 800 cell simulations. 7.5 times more data storage is not worth the 2%

difference in the detonation properties for 2000 computational cells. The rest of the

simulations will use 800 computational cells as a starting grid resolution for each

metalized case. If the grid resolution does not provide good results for the metalized

case, then 2000 computational cells will be utilized. In order to reduce the storage

amount the data saving rate can be changed. The data saving rate is defaulted to

save a fort file every 10 time steps. For 2000 cells the rate will be changed to save a

fort file every 100 time steps. The fewer time step files saved will provide less data

points and might result in poor results. This issue will be considered when all the

metalized explosive simulation data at 800 computational cells is studied in Chapter

IV.

3.6.2 PBX9501/Al at 3 Different Piston Speeds

Several metalized explosive simulations were performed at three different piston

speeds to test the limitations of the MPEXS code. The piston speed that were

considered were up = 0.5, 1.0, and 1.5 km/s. To test the code three cases were

considered; PBX9501 10 9, PBX9501 10 13, and PBX9501 20 9. This covered

simulations at the lowest concentration of aluminum, which is 10% Al mass fraction,

at two different Al particle diameters. It also covered simulations at the highest

concentration of aluminum, 20% Al mass fraction.

The piston speed of up = 2.0 km/s was tested for the three cases. The simulation

ran with no issues for PBX9501 10 9 and PBX9501 10 13 but failed immedi-

ately after starting for PBX9501 20 9. The MPEXS code has problems performing

calculations with high aluminum mass fractions and high piston speeds. A reasons

might be that at high impact speeds the explosive mixture might have compressibility

issues. This high metal mass fraction, high impact speed problem has been reported
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to AFRL, so it can be resolved in further iterations of the code.

Since PBX9501 20 9 failed at a piston speed of up = 2.0 km/s, the three cases

were run at a lower piston speed of up = 1.0 km/s. The MPEXS code ran with no

issues for three cases. The problem with this lower piston speed is that the detonation

wave did not reach steady state for the chosen position domain.

Since up = 2.0 km/s was too fast and up = 1.0 km/s was too slow, a piston speed

of up = 1.5 km/s was tested for the three cases. The three cases, PBX9501 10 9,

PBX9501 10 13, and PBX9501 20 9, ran with no issues and the detonation wave

reached steady state for the chosen domain. The piston speed of up = 1.5 km/s

provided good results and will be utilized for all the simulations what will be discussed

in the results chapter.

3.7 Design of Experiments

Design of Experiments (DOE) is the process of determining the cause-and-effect

relationships between input parameters and how these relationships affect the output.

The purpose for such analysis is to optimize the output by looking at the inputs. A

stochastic experiment has inputs that are uncontrollable and are usually not solved

analytically. DOE methods are useful for stochastic experiments to determine the

effect that these uncontrollable inputs have on the output. In deterministic experi-

ments the inputs are controllable and the relationship between input and output is

conclusively determined. The input parameters for this research are particle size and

mass fraction and both are controllable and are independent of each other. The six

different aluminum particle sizes are discrete because these sizes are determined by

the manufacturer. The aluminum mass fraction is determined by the user. These

input parameters are controllable and independent of each other, therefore this re-

search is considered deterministic. DOE methods were considered for the multiphase
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code simulation runs but there was no benefit in using a DOE method.

3.8 Summary

Section 3.2 explained the different modeling methods that lead to multiphase

computational modeling. After the modeling method for multiphase explosives was

described, a brief summary was given of the main files utilized in the MPEXS code in

Section 3.3. The MPEXS code will be utilized to perform all the simulations of metal-

ized PBX9501 explosive. Section 3.4 describes the different simulations runs that will

be performed at different Al mass fractions and Al particle diameters. Section 3.5 and

Section 3.6 explained the different preliminary studies that were performed to find

the limitations of the code and selected the initial parameters for all the simulation

cases.
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IV. Data Discussion

4.1 Introduction

This chapter will present the results from the three main studies that were per-

formed. The purpose of these studies was to evaluate the stability and limitations

of the MPEXS code. The first study is a short study with neat PBX9501 to com-

pare run-to-detonation properties against a single phase explosive code developed by

AFRL. This study will verify that the MPEXS code outputs reasonable data. The

second study is a convergence test of detonation properties by varying the number

of computational cells for metalized PBX9501. The goal of this study was to test

the stability of the code by looking for a convergence in the data as the number of

computational cells increased, decreasing the grid size. The third study is to study

the effects of aluminum on PBX9501 by performing several simulations at a range of

aluminum mass fractions and aluminum particle diameters. The results of the three

studies are presented in the three sections below.

4.2 Run-to-Detonation Properties for Neat PBX9501

The MPEXS code was developed to run simulations for multiphase explosives that

contain at least two solid components like an explosive and a metal. For this research,

the chosen explosive is PBX9501 and the chosen non-reactive metal is aluminum.

The MPEXS code also has the capability to run single phase explosive simulations.

Before multiphase simulations are considered, the MPEXS code must first be tested

with single phase explosive simulations.

The MPEXS code was utilized to perform a short Run2Det study of neat PBX9501

at several piston speeds up = 0.5, up = 1.0, and up = 1.5 km/s. The descrip-

tion “Run-to-detonation” is abbreviated to “Run2Det” in this report. The MPEXS
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Run2Det results will be compared to the results of the Single-Phase Explosive Simu-

lation (SPEXS) code. The SPEXS code was developed and utilized by AFRL’s High

Explosives Research and Development (HERD) group to determine Run2Det prop-

erties for single phase explosives. The goal of this study is to compare the MPEXS

results to SPEXS results. The equations of state utilized for the MPEXS code are

different from the SPEXS code, therefore the Run2Det properties should be different.

Although the results will differ, the MPEXS data should display a similar trend as

the SPEXS data. A qualitative comparison will verify the MPEXS code is working

properly.

Two important parameters in explosive studies are run-to-detonation time and

run-to-detonation distance. The Run2Det time and distance is the time and loca-

tion the explosive detonation transitions to steady state. Detonation properties in

the transition stage provide information with little use because these properties are

constantly changing and unstable. The Run2Det time versus distance diagrams pro-

vide an illustration of the transition from the initial shock wave to the detonation

shock wave. These time versus distance diagrams, often call “pop-plots”, provide the

Run2Det time and distance as a function of shock input pressure. The threshold input

pressure is set by the user in the postprocess.f90 file described in Section 3.3.1.4.

Pop-plots are utilized to determine the transition time and location to a steady state

detonation.

There are two slopes connected by a smooth transition in the pop-plot. The slope

closest to the zero position represents the initial shock wave. During the initial shock

wave the detonation is still in development. The second slope represents the steady

state detonation shock wave. The transition from one slope to the other is very

gradual and difficult to detect. The goal is to determine the time and position when

the detonation reaches steady state. The time and position can be approximated by
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finding a point where the second slope begins, showing a constant rate of change.

Figure 21 to Figure 23 show the pop-plots for the three piston speeds tested in this

study. The pop-plots have a pressure gradient bar on the right side of the plot. The

pressure is the current pressure at the time and position within the chart. If the color

gradient that represents the current pressure is followed along the slope of the first

slope, it is seen that pressure increases as the initial shock wave develops. Along the

transition to the steady state slope line the pressure increases rapidly, then at some

point the pressure stabilizes to a constant pressure. The point where the pressure

values begin to stabilize is the point that is chosen to be the Run2Det time and

position. The point at the beginning of the second slope can be seen on Figure 21 to

Figure 23. The chosen pressure for this neat PBX9501 study is 3.0e10 Pa (30 GPa).

Three pop-plots were generated for the three simulation runs at piston speeds of

up = 0.5, up = 1.0, and up = 1.5 km/s. Figure 21 is the pop-plot for Neat PBX9501

at up = 0.5 km/s and shows a Run2Det time of 2.1705 µs and distance of 5.001

millimeters. Figure 22 is the pop-plot for Neat PBX9501 at up = 1.0 km/s and shows

a Run2Det time of 0.41043 µs and distance of 1.4125 millimeters. Figure 23 is the

pop-plot for Neat PBX9501 at up = 1.5 km/s and shows a Run2Det time of 0.15460

µs and distance of 0.60063 millimeters.
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Figure 21. Neat PBX9501 Pop-Plot (up = 0.5 L = 18 Nx = 3000)

Figure 22. Neat PBX9501 Pop-Plot (up = 1.0 L = 4 Nx = 800)
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Figure 23. Neat PBX9501 Pop-Plot (up = 1.5 L = 1 Nx = 800)

Table 8 is a summary of all the SPEXS and MPEXS simulation results for the

three piston speeds. As seen on Table 8, Run#1 failed for the simulations run with

the MPEXS code. The reason for the code failure was that the grid size was too

large. The grid size is calculated by taking the total length divided by the number

of computational cells utilized. The length for Run#1 was 18 mm and the number

of cells utilized was 800 cells resulting in a grid size of 0.022 mm/cell. The grid size

was increased by using 3000 cells over the same length for Run#2, resulting in a grid

size of 0.006 mm/cell. The results for both codes are as follows.

70



Table 8. Neat PBX9501 Run-to-Detonation Properties

Run # up (km/s)

Grid

Size

(mm/cell)

SPEXS

Run2Det

x (mm)

MPEXS

Run2Det

x (mm)

SPEXS

Run2Det

Time (µs)

MPEXS

Run2Det

Time (µs)

1 0.5 0.022 15.00 Failed 4.50 Failed

2 0.5 0.006 15.00 5.00 4.50 2.17

3 1.0 0.005 2.00 1.41 0.45 0.41

4 1.5 0.001 0.30 0.60 0.10 0.15

Figure 24 is a bar chart to compare the Run2Det distance for both the SPEXS

and MPEXS codes. The Run2Det distance for each piston speed are shown in blue

for SPEXS and red for MPEXS. As the piston speed increases the Run2Det distance

decreases. The average rate of change between up = 0.5 and up = 1.0 is 26mm/(km/s)

for SPEXS and 7.18 mm/(km/s) for MPEXS. The average rate of change between

up = 1.0 and up = 1.5 is 3.40 mm/(km/s) for SPEXS and 1.62 mm/(km/s) for

MPEXS. The reason for the difference in results between both codes is due to the use

of different equations of state for the reaction. The average rate of change between

each set of points is larger for the SPEXS code but the takeaway is that the MPEXS

code follows the same trend.
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Figure 24. NeatPBX9501 R2D Distance Chart

Figure 25 shows the Run2Det time at different piston speeds for both the SPEXS

and MPEXS codes. As the piston speed increases the Run2Det time decreases. The

average rate of change between up = 0.5 and up = 1.0 is 8.10 µs/(km/s) for SPEXS

and 3.52 µs/(km/s) for MPEXS. The average rate of change between up = 1.0 and

up = 1.5 is 0.70 µs/(km/s) for SPEXS and 0.52 µs/(km/s) for MPEXS. The average

rate of change between each set of points is larger for the SPEXS code. Again the

difference in the results between both codes is that different equations of state were

utilized.
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Figure 25. NeatPBX9501 R2D Time Chart

4.3 PBX9501/AL Convergence Test

Another study that was performed was a convergence test of detonation properties

for different computational cell sizes. The computational cell sizes play an important

role in the grid resolution of the simulation. The number of computational cells,

Nx, per unit length is the grid size. The MPEXS code was designed to perform

simulations at the macroscopic scale. If the grid size is large the code will stop

because the equations can not handle macro scale calculations. If the grid size is

very small then the code will run into problems were the grid size is smaller than

the particle diameters. The convergence test was performed with PBX9501 10 9

at a piston speed of 1.0 km/s. The computational cell sizes were varied from 200

to 3000 cells. There are three detonation properties that were considered for this
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convergence test, Run2Det time, Run2Det distance, and detonation velocity. The

Run2Det distance and time are approximated by analyzing the pop-plot chart and

finding the point were the detonation transitions to steady-state as described earlier.

The point was chosen at the beginning of the steady-state slope at a pressure value

of 35 GPa for all metalized explosive cases.

Table 9 summarizes the results for the convergence test for the computational cell

range. Run 1 and 2 failed due to the grid size being too large. Based on this study

and the neat explosive study from Section 4.2 it was concluded that for any grid

size larger than 9.9e-3 mm/cell will make the code fail. The MPEXS code ran for

simulations with 800 or more computational cells. The Run2Det distance and time,

and detonation velocity results are listed below, in Table 9.

The final stop time for all the runs in this study was set at tfinal = 2.0 µs in the

maininput.txt file. It was observed that all the simulations did not run to the final

run time. The runs stopped around 1.2 µs and runs 10 and 11 stopped around 1.4

µs. An explanation for the early stop time is that the errors occurring in the code

are due to larger numerical error for lower resolutions simulations. As the resolution

increases, the simulations run longer due to a decrease in numerical error. The early

stop time issue will be reported to the HERD to be corrected in future code versions.
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Table 9. PBX9501 10 9 Convergence Test

Run # Nx
Grid Size

(mm/cell)

Run2Det

x (mm)

Run2Det

Time (µs)

Det.

Vel. (km/s)

1 200 0.0300 Failed Failed Failed

2 400 0.0150 Failed Failed Failed

3 800 0.0075 3.761 1.193 6.142

4 1000 0.0060 3.699 1.182 6.576

5 1300 0.0046 3.722 1.182 7.013

6 1600 0.0037 3.733 1.183 7.251

7 1800 0.0033 3.738 1.184 7.387

8 2000 0.0030 3.743 1.184 7.667

9 2500 0.0024 3.757 1.186 7.957

10 3000 0.0020 3.739 1.183 7.940

The results for the Run2Det distance are plotted on Figure 26. For smaller com-

putational cells the Run2Det distance varies but as the cell number increases the

Run2Det distance seems to stabilize at a distance around 3.74 mm.
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Figure 26. Convergence Test for PBX9501 10 9 Run2Det Distance

Figure 27 is a plot of Run2Det time in microseconds versus computational cells.

The Run2Det time has the same relationship to Nx as Run2Det distance. At smaller

cell amounts the results are unstable but as the number of cells increases the Run2Det

time stabilizes around 1.183 µs.

Figure 27. Convergence Test for PBX9501 10 9 Run2Det Time
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Figure 28 plots the detonation velocity in kilometers per second versus compu-

tational cells. As the resolution increases the detonation velocity results stabilize

around 7.94 km/s. The results for Run2Det distance, Run2Det time, and detonation

velocity behave as expected where the results should converge to a steady value as

the resolution is increased.

Figure 28. Convergence Test for PBX9501 10 9 Detonation Velocity

Figure 29 through Figure 31 are the pop-plots for three different computational

cells, 800, 1600, and 3000 cells, for PBX9501 10 9. The domain length for each

simulation is from the left boundary location (0 mm) to the right boundary location

(6 mm). All the pop-plots are very similar since Run2Det distance has a standard

deviation of 0.019 mm, a standard deviation of 0.003 µs for Run2Det time, and a

standard deviation of 0.644 km/s for detonation velocity. Figure 31 looks different

than the other simulations due to the longer running time when 3000 computational

cells were utilized, but the Run2Det point is almost the same for the three plots.

Although the simulations stopped earlier than the final simulation time, the data

collected was enough to determine steady state detonation properties like Run2Det
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distance, Run2Det time, and detonation velocities.
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Figure 29. PBX9501 10 9 Pop-Plot (Nx=800 cells)
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Figure 30. PBX9501 10 9 Pop-Plot (Nx=1600 cells)
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Figure 31. PBX9501 10 9 Pop-Plot (Nx=3000 cells)

The convergence test was performed to determine the stability of grid convergence

and the limits of the MPEXS code. The grid convergence of the code was proved by

the converging results as the number of computational cells increased. The number

of computational cells is related to the resolution or the grid size of the simulation.

The finer the resolution the more precise the results and should converge as seen in

this study. The limits of the MPEXS were also determined during this study. The

MPEXS code did not run with computational sizes such as Nx = 200 and Nx = 400.

For Nx = 800 and Nx = 1000 the results were unpredictable.

4.4 All Cases of PBX9501/Al to Steady State Detonation

The third study was performed with all the cases of PBX9501/Al, which covered a

wide range of aluminum particle diameter and aluminum mass fraction. The six alu-

minum diameters were tested for each of the three aluminum mass fractions, resulting
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in 18 simulation runs. For example, the aluminum mass fraction of 10 percent was

tested with 9, 13, 19, 23, 29, and 34 micron diameter. The same six diameters were

utilized for 15 and 20 percent aluminum mass fraction. The 18 runs were performed

for two computational cell, 800 and 2000, for a total of 36 simulation runs. These

two computational cell sizes of Nx = 800 and Nx = 2000 were chosen to compare

the data for both a low and high grid size. A piston speed of up = 1.5 km/s was se-

lected for all the PBX9501/Al cases. The main parameters considered were Run2Det

distance, Run2Det time, detonation velocity, pressure, temperature, particle velocity,

and volume fraction.

This study will evaluate the stability and limits of the MPEXS code. The results

will be analyzed and qualitative conclusions will be made about the effects of Al on

PBX9501. As discussed in earlier chapters, comparing simulation data to empirical

data does not provide any benefit to this research due to the complexity of plastically

bonded explosives like PBX9501.

4.4.1 Run-to-Detonation Properties and Detonation Velocity

The 18 runs were performed at 800 computational cells at up = 1.5 km/s. The

results for Run2Det distance and time, and detonation velocity are presented on

Table 10. As the Al mass fraction increases from 10 to 15 to 20 percent, the Run2Det

distance decreases. As the Al diameter increases from 9 to 34 µm, the Run2Det

distance slightly decreases. The effects of varying the mass fraction are larger than the

effects of varying the diameter of the Al for Run2Det distance. As the mass fraction

is increased from 10 to 15 to 20 percent, the Run2Det time decreases significantly.

As the Al diameter is increased from 9 to 34 µm for each mass fraction, the Run2Det

time varies but on average it remains constant. The results for detonation velocity

are unpredictable for the 15 and 20 percent cases.
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The same 18 runs were performed again for 2000 computational cells at the same

piston speed up = 1.5 km/s. The results for Run2Det distance and time, and deto-

nation velocity are presented on Table 11. The results for 2000 computational cells

are similar from the 800 computational cells cases discussed in the previous para-

graph but the results are more stable for detonation velocity. As the Al mass fraction

increases from 10 to 15 to 20 percent, the Run2Det distance decreases. As the Al

diameter increases from 9 to 34 µm, the Run2Det distance slightly decreases. The

effects of varying the mass fraction are larger than the effects of varying the diameter

of the Al for Run2Det distance. As the mass fraction is increased from 10 to 15 to 20

percent, the Run2Det time decreases significantly. As the Al diameter is increased

from 9 to 34 µm for each mass fraction, the Run2Det time varies but on average it

remains constant. As the Al mass fraction increases from 10 to 15 to 20 percent, the

detonation velocity decreases. Also, as the Al particle diameter increases from 9 to

34 µm for each mass fraction, the data shows the detonation velocity decreases.
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Table 10. PBX9501/Al Detonation Properties at up = 1.5 km/s Nx = 800cells

Run # Name
Run2Det

x (mm)

Run2Det

Time (µs)

Det.

Vel. (km/s)

1 PBX9501 10 9 1.016 0.258 8.024

2 PBX9501 10 13 1.021 0.259 7.997

3 PBX9501 10 19 1.026 0.260 7.978

4 PBX9501 10 23 1.026 0.261 7.967

5 PBX9501 10 29 1.021 0.260 7.954

6 PBX9501 10 34 1.011 0.258 7.953

7 PBX9501 15 9 0.939 0.233 7.749

8 PBX9501 15 13 0.941 0.234 7.745

9 PBX9501 15 19 0.939 0.234 7.621

10 PBX9501 15 23 0.939 0.235 7.778

11 PBX9501 15 29 0.929 0.234 7.807

12 PBX9501 15 34 0.921 0.233 7.770

13 PBX9501 20 9 0.866 0.210 7.378

14 PBX9501 20 13 0.864 0.211 7.455

15 PBX9501 20 19 0.869 0.211 7.490

16 PBX9501 20 23 0.861 0.212 7.478

17 PBX9501 20 29 0.851 0.211 7.460

18 PBX9501 20 34 0.854 0.211 7.561
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Table 11. PBX9501/Al Detonation Properties at up = 1.5 km/s Nx = 2000cells

Run # Name
Run2Det

x (mm)

Run2Det

Time (µs)

Det.

Vel. (km/s)

1 PBX9501 10 9 1.014 0.255 8.060

2 PBX9501 10 13 1.020 0.257 8.026

3 PBX9501 10 19 1.013 0.257 8.014

4 PBX9501 10 23 1.012 0.257 8.005

5 PBX9501 10 29 1.011 0.257 7.996

6 PBX9501 10 34 1.017 0.258 7.997

7 PBX9501 15 9 0.944 0.232 7.897

8 PBX9501 15 13 0.943 0.233 7.866

9 PBX9501 15 19 0.939 0.233 7.858

10 PBX9501 15 23 0.938 0.233 7.852

11 PBX9501 15 29 0.932 0.233 7.844

12 PBX9501 15 34 0.926 0.232 7.848

13 PBX9501 20 9 0.888 0.214 7.813

14 PBX9501 20 13 0.887 0.215 7.815

15 PBX9501 20 19 0.871 0.212 7.783

16 PBX9501 20 23 0.873 0.213 7.765

17 PBX9501 20 29 0.859 0.211 7.739

18 PBX9501 20 34 0.850 0.209 7.744
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Figure 32 and Figure 33 shows the pop-plots for PBX9501 at 10% aluminum mass

fraction for 9 mm and 34 mm aluminum diameters. The smallest and largest of Al

particle diameter were chosen for each Al mass fraction. The pop-plots for the Al

particle diameters 13, 19, 23, 29 are very similar to each other at each Al mass frac-

tion. For brevity of the report all the pop-plots were not included but the results are

presented on Table 10 and Table 11. The pop-plots have a pressure gradient bar on

the right side of the plot whose units are in gigapascals. The Run2Det properties for

PBX9501 10 9 up1.5 2000cells are Run2Det time = 0.255 µs and Run2Det dis-

tance = 1.014 mm. The Run2Det properties for PBX9501 10 34 up1.5 2000cells

are Run2Det time = 0.258 µs and Run2Det distance = 1.017 mm.
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Figure 32. PBX9501 10 9 Pop-Plot (Nx=2000 cells)
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Figure 33. PBX9501 10 34 Pop-Plot (Nx=2000 cells)

Figure 34 and Figure 35 show the pop-plots for PBX9501 at 15% aluminum mass

fraction for 9 mm and 34 mm aluminum diameters. The Run2Det properties for

PBX9501 15 9 up1.5 2000cells are Run2Det time = 0.232 µs and Run2Det dis-

tance = 0.944 mm. The Run2Det properties for PBX9501 15 34 up1.5 2000cells

are Run2Det time = 0.232 µs and Run2Det distance = 0.926 mm.
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Figure 34. PBX9501 15 9 Pop-Plot (Nx=2000 cells)
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Figure 35. PBX9501 15 34 Pop-Plot (Nx=2000 cells)
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Figure 36 and Figure 37 show the pop-plots for PBX9501 at 20% aluminum mass

fraction for 9 µm and 34 µm aluminum diameters. Figure 36 seems to have a greater

slope than the rest of the pop-plots but it only looks different due to the shorter run

time for the PBX9501 20 9 simulation run. The results for Run2Det distance and

time for both cases are within 0.012 mm and 0.001 µs of each other. The Run2Det

properties for PBX9501 20 9 up1.5 2000cells are Run2Det time = 0.214 µs and

Run2Det distance = 0.888 mm. The Run2Det properties for

PBX9501 20 34 up1.5 2000cells are Run2Det time = 0.209 µs and Run2Det dis-

tance = 0.850 mm.
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Figure 36. PBX9501 20 9 Pop-Plot (Nx=2000 cells)
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Figure 37. PBX9501 20 34 Pop-Plot (Nx=2000 cells)

Figure 38 shows the Run2Det distance for all the runs at both computational cell

amounts, 800 and 2000 cells. Runs 1-6 are for PBX9501 at 10% Al mass fraction for

the six Al particle diameters. The red square data points are for Nx2000 and the blue

diamond data points are for Nx800. The other runs for 15 and 20 percent are also

plotted and can be identified using the key on the right side of the chart in Figure 38.

The Run2Det distance for 10% PBX9501 at Nx2000, represented by the red

squares, goes up and down, and has no noticeable trend. The Run2Det distance

for 10% PBX9501 at Nx800, represented by the blue diamonds, has a small convex

trend where the distance increases and then decreases as the Al particle diameter in-

creases. The Run2Det distance for 15% PBX9501 at Nx2000 and Nx800, represented

by the purple X and green triangle respectively, both have a slight decrease in dis-

tance as the Al particle diameter increases. The Run2Det distance for 20% PBX9501

at Nx2000 and Nx800, represented by the orange circle and teal star respectively,

88



both have steady values then decrease slightly and then steady again. In general a

conclusion can be made that as the aluminum mass fraction increases from 10 to 15

to 20 percent, the Run2Det distance decreases. As the aluminum diameter increases

from 9 to 34 µm, the Run2Det distance slightly decreases. The effects of varying the

mass fraction are larger than the effects of varying the diameter of the aluminum.

Figure 38. PBX9501 All Cases Run2Det Distance

Figure 39 shows the Run2Det time for all the runs at both computational cell

amounts, 800 and 2000 cells. The Run2Det time for 10% PBX9501 at Nx2000,

represented by the red squares, increases, decreases, and then increases again not

showing any trend in the data. The Run2Det time for 10% PBX9501 at Nx800,

represented by the blue diamonds, has a small convex trend as the aluminum size

increases. The Run2Det time for 15% PBX9501 at Nx2000 and Nx800, represented

by the purple X and green triangle respectively, both have a small convex trend as

the Al particle diameter increases. The results for both case are almost identical

and points are almost on top of each other. The Run2Det time for 20% PBX9501
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at Nx2000, represented by the orange circle, has a slight decrease as the Al particle

diameter increases. The Run2Det time for 20% PBX9501 at Nx800, represented by

the teal star, is steady as the Al particle diameter increases. The effects of varying

the mass fraction are larger than the effects of varying the diameter of the aluminum.

When the mass fraction is increased from 10 to 15 to 20 percent, the Run2Det time

decreases significantly. When the aluminum diameter is increased from 9 to 34 µm

for each mass fraction, the Run2Det time varies but the variation is small.

Figure 39. PBX9501 All Cases Run2Det Time

Figure 40 plots the detonation velocity versus the run numbers at the three differ-

ent aluminum mass fractions. The detonation velocity for 10% PBX9501 at Nx2000

and Nx800, represented by the red squares and blue diamonds respectively, both have

a steady decrease as the Al particle diameter increases. The detonation velocity for

15% PBX9501 at Nx2000, represented by the purple X, has a steady decrease as the

Al particle diameter increases. The detonation velocity for 15% PBX9501 at Nx800,

represented by the green triangle, has a very unstable pattern with large deviations
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in the detonation velocity as the Al size increases. The detonation velocity for 20%

PBX9501 at Nx2000, represented by the orange circle, has a steady decrease as the

Al particle diameter increases. The detonation velocity for 20% PBX9501 at Nx800,

represented by the teal star, has a unstable pattern in the data. For this case, the

detonation velocity increases as the particle diameter increases, which is opposite of

what is expected. Considering only the more stable results using 2000 cells a few

conclusions can be made for detonation velocity. As the Al mass fraction increases

from 10 to 15 to 20 percent, the detonation velocity decreases. Also, as the Al par-

ticle diameter increases from 9 to 34 µm for each mass fraction, the data shows the

detonation velocity decreases.

Figure 40. PBX9501AllCases Detonation Velocity

It was concluded that the simulations using 2000 computational cells provide more

consistent results for both varying cases, Al mass fraction and Al particle diameter.

The purpose of running simulations with both sizes of computational cells, 800 and

2000 cells, is study the effects of grid size on metalized explosive simulations. In

Section 4.3, it was found that at lower resolutions the detonation property results are
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unstable. The same stability issues at low resolution was also seen for the metalized

explosive simulations presented in this section.

4.4.2 Other Detonation Properties

Detonation properties like Run2Det distance and time, and detonation velocity are

provide more useful information about explosion but other properties like pressure,

particle velocity, volume fraction, and temperature must not be neglected. Pressure

of the shock wave provides information about the strength of the shock wave. Parti-

cle velocity provides information on the velocity of the shock wave. Volume fraction

provides information about the chemical reaction. Temperature provides information

about the chemical reaction but as described earlier, the computational model does

not accurately predict the actual temperatures near the shock wave due to the insuf-

ficient resolution near the reaction zone, therefore those plots will not be presented

[5].

For Figure 41 to Figure 49, pressure, particle velocity, and volume fraction will be

plotted against position. These figures are a snap-shoot of the shock wave at a time

after the wave has reached steady-state. To compare the different cases to each other

a position of 1.6 mm was chosen for all the plot. Although the time might be different

for each case, the chosen position is far enough that steady-state has been reached

for all the cases. Once steady-state is reached all the properties will not change for

the range being considered here.

Figure 41 to Figure 43 plot pressure versus position for the smallest and largest

Al particle diameter, 9 and 34 µm, at each Al mass fraction. The most important

pressure for these plots is the pressure of gas reaction product. The pressure of the

metal particles is not important because it is not driving the shock wave. The pressure

of the explosive is the same as the gas pressure until the explosive volume fraction
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goes to zero. The data for the pressure of the explosive is irrelevant after the volume

fraction goes to zero because all the explosive material has been consumed by the

reaction.

Figure 41a shows the peak gas pressure of the shock wave at 39.20 GPa for

PBX9501 10 9 up1.5. Figure 41b shows the peak gas pressure of the shock wave

at 43.64 GPa for PBX9501 10 34 up1.5. It is observed that at 10% Al mass

fraction the shock wave pressure increases as the Al particle diameter increases.
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Figure 41. PBX9501 10% Al Mass Fraction Pressure Plot

Figure 42a and Figure 42b plot pressure versus position for PBX9501 15 9 up1.5

and PBX9501 15 34 up1.5. Figure 42a shows the peak gas pressure of the shock

wave at 36.51 GPa for PBX9501 15 9 up1.5. Figure 42b shows the peak gas pres-

sure of the shock wave at 42.31 GPa for PBX9501 15 34 up1.5. It is observed

that at 15% Al mass fraction the shock wave pressure increases as the Al particle

diameter increases.
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Figure 42. PBX9501 15% Al Mass Fraction Pressure Plot

Figure 43a and Figure 43b plot pressure versus position for PBX9501 20 9 up1.5

and PBX9501 20 34 up1.5. Figure 43a shows the location of shock wave to be at

around 1.15 mm. The reason for the shock wave stopping at this location is due to

the simulation quiting at t = 0.257 µs. Even though the simulation stopped early,

the detonation reached steady-state prior to the quiting time and the results are still

valid. Figure 43a shows the peak gas pressure of the shock wave at 31.23 GPa for

PBX9501 20 9 up1.5. Figure 43b shows the peak gas pressure of the shock wave at

37.61 GPa for PBX9501 20 34 up1.5. It is observed that at 20% Al mass fraction

the shock wave pressure increases as the Al particle diameter increases.
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Figure 43. PBX9501 20% Al Mass Fraction Pressure Plot

Figure 44 to Figure 46 plot particle velocity versus position for the smallest and

largest Al particle diameter, 9 and 34 µm, at each Al mass fraction. The most

important particle velocity for these plots is the particle velocity of gas reaction

product. The data for the particle velocity of the explosive is irrelevant after the

volume fraction goes to zero because all the explosive material has been consumed

by the reaction. Figure 44a shows the peak gas particle velocity of the shock wave

at 3.609 km/s for PBX9501 10 9 up1.5. Figure 44b shows the peak gas particle

velocity of the shock wave at 3.727 km/s for PBX9501 10 34 up1.5. It is observed

that at 10% Al mass fraction the shock wave particle velocity increases slightly as

the Al particle diameter increases.
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(b) PBX9501 10 34 up1.5 2000cells

Figure 44. PBX9501 10% Al Mass Fraction Velocity Plot

Figure 45a and Figure 45b plot particle velocity versus position for

PBX9501 15 9 up1.5 and PBX9501 15 34 up1.5. Figure 45a shows the peak

gas particle velocity of the shock wave at 3.580 km/s for PBX9501 15 9 up1.5.

Figure 45b shows the peak gas particle velocity of the shock wave at 3.774 km/s for

PBX9501 15 34 up1.5. It is observed that at 15% Al mass fraction the shock wave

particle velocity increases slightly as the Al particle diameter increases.
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(b) PBX9501 15 34 up1.5 2000cells

Figure 45. PBX9501 15% Al Mass Fraction Velocity Plot

Figure 46a and Figure 46b plot particle velocity versus position for

PBX9501 20 9 up1.5 and PBX9501 20 34 up1.5. Figure 46a shows the peak

gas particle velocity of the shock wave at 3.294 km/s for PBX9501 20 9 up1.5.

Figure 46b shows the peak gas particle velocity of the shock wave at 3.591 km/s for

PBX9501 20 34 up1.5. It is observed that at 20% Al mass fraction the shock wave

particle velocity increases slightly as the Al particle diameter increases.
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(b) PBX9501 20 34 up1.5 2000cells

Figure 46. PBX9501 20% Al Mass Fraction Velocity Plot

Figure 47 to Figure 49 plot volume fraction versus position for the smallest and

largest Al particle diameter, 9 and 34 µm, at each Al mass fraction. All the volume

fraction plots presented in the figures below look the same. The reason all the plots

look the same is because all the simulations should be at steady-state at this position.

The volume fraction for the explosive material, represented by the blue line, should

go to zero shortly after the shock wave has passed. The volume fraction for the gas,

represented by the red line, should go to total volume fraction set by the user after the

shock wave has passed. The volume fraction for the metal, represented by the green

line, should remain constant because the metal in non reactive in the simulation. The

explosive volume fraction should exponentially decay to zero very sharply and the gas

volume fraction should exponentially increase very sharply to the total solids volume

fraction. All these conditions are met by all the simulation at the plotted position

and time, verifying that all simulations are at steady-state.
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(b) PBX9501 10 34 up1.5 2000cells

Figure 47. PBX9501 10% Al Mass Fraction Volume Fraction Plot
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Figure 48. PBX9501 15% Al Mass Fraction Volume Fraction Plot
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Figure 49. PBX9501 20% Al Mass Fraction Volume Fraction Plot

Figure 50a shows the peak gas density of the shock wave at 2319 kg/m3 for

PBX9501 10 9 up1.5. Figure 50b shows the peak gas density of the shock wave

at 2419 kg/m3 for PBX9501 10 34 up1.5. It is observed that at 10% Al mass

fraction the shock wave density increases as the Al particle diameter increases.
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Figure 50. PBX9501 10% Al Mass Fraction Density Plot

Figure 51a and Figure 51b plot density versus position for PBX9501 15 9 up1.5

100



and PBX9501 15 34 up1.5. Figure 51a shows the peak gas density of the shock

wave at 2243 kg/m3 for PBX9501 15 9 up1.5. Figure 51b shows the peak gas

density of the shock wave at 2361 kg/m3 for PBX9501 15 34 up1.5. It is observed

that at 15% Al mass fraction the shock wave density increases as the Al particle

diameter increases.
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Figure 51. PBX9501 15% Al Mass Fraction Density Plot

Figure 52a and Figure 52b plot density versus position for PBX9501 20 9 up1.5

and PBX9501 20 34 up1.5. Figure 52a shows the peak gas density of the shock

wave at 2168 kg/m3 for PBX9501 20 9 up1.5. Figure 52b shows the peak gas

density of the shock wave at 2270 kg/m3 for PBX9501 20 34 up1.5. It is observed

that at 20% Al mass fraction the shock wave density increases as the Al particle

diameter increases.
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Figure 52. PBX9501 20% Al Mass Fraction Density Plot

Table 12 provides the data collected for the shock wave gas pressure, gas products

particle velocity, and gas density. Run # 1 through 6 are the simulations for 10% Al

mass fraction from 9 µm to 34 µm Al particle diameter. Run # 7 through 12 are the

simulations for 15% Al mass fraction from 9 µm to 34 µm Al particle diameter. Run

# 13 through 18 are the simulations for 20% Al mass fraction from 9 µm to 34 µm

Al particle diameter. The gas pressure is in gigapascals, the gas particle velocity is

in kilometers per second, and the density is in kilograms per meter cubed.
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Table 12. PBX9501/Al Gas Properties at up = 1.5 km/s Nx = 2000cells

Run

#
Name

Pressure

(GPa)

Part. Vel.

(km/s)

Density

(kg/m3)

1 PBX9501 10 9 39.200 3.609 2319

2 PBX9501 10 13 40.640 3.779 2336

3 PBX9501 10 19 41.300 3.718 2363

4 PBX9501 10 23 41.960 3.719 2381

5 PBX9501 10 29 42.480 3.798 2403

6 PBX9501 10 34 43.640 3.727 2419

7 PBX9501 15 9 36.510 3.580 2243

8 PBX9501 15 13 37.700 3.601 2259

9 PBX9501 15 19 38.940 3.831 2297

10 PBX9501 15 23 40.530 3.737 2319

11 PBX9501 15 29 41.330 3.700 2346

12 PBX9501 15 34 42.310 3.774 2361

13 PBX9501 20 9 31.230 3.294 2168

14 PBX9501 20 13 33.600 3.411 2167

15 PBX9501 20 19 34.680 3.573 2197

16 PBX9501 20 23 35.850 3.464 2218

17 PBX9501 20 29 36.600 3.652 2245

18 PBX9501 20 34 37.610 3.591 2270

The results from the table above are presented in a chart to better observe the

trends in the data. Figure 53 plots the pressure versus Run # for the three aluminum

mass fractions. The first six data point are for the six Al particle diameters at 10% Al

mass fraction and are represented by the blue diamonds. The next six data point are
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for the six Al particle diameters at 15% Al mass fraction and are represented by the

red squares. The last six data point are for the six Al particle diameters at 20% Al

mass fraction and are represented by the green triangles. It can be seen from Figure

53 the gas pressure steadily increases as the Al particle diameter increases at 10% Al

mass fraction. For 15% Al mass fraction the first pressure is less than than all the

10% Al mass fraction cases. The same trend is observed for 15% Al mass fraction,

where the gas pressure steadily increases as the Al particle diameter increases. Again

for 20% Al mass fraction the first pressure is lower than all the 10% and 15% Al mass

fraction cases. The same trend is observed for 20% Al mass fraction cases where the

gas pressure steadily increases as the Al particle diameter increases.

Figure 53. PBX9501 All Cases Gas Pressure

Figure 54 plots the gas particle velocity versus Run # for the three aluminum mass

fractions. The same color and symbols are utilized for the different simulation runs

as in Figure 53. All the 18 simulations have the same gas particle velocity pattern.

As the Al particle diameter increases in each mass fraction case, the particle velocity
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goes up and down. It was concluded that on average the particle velocity remains

constant with varying Al particle diameter. There is a very small drop on particle

velocity from 10% to 15% to 20%.

Figure 54. PBX9501 All Cases Gas Particle Velocity

Figure 55 plots the gas density versus Run # for the three aluminum mass frac-

tions. It can be seen from Figure 55 the gas density steadily increases as the Al

particle diameter increases at 10% Al mass fraction. For 15% Al mass fraction the

first density is less than than all the 10% Al mass fraction cases. The same trend is

observed for 15% Al mass fraction, where the gas density steadily increases as the Al

particle diameter increases. Again for 20% Al mass fraction the first density is lower

than all the 10% and 15% Al mass fraction cases. The same trend is observed for

20% Al mass fraction cases where the gas density steadily increases as the Al particle

diameter increases.
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Figure 55. PBX9501 All Cases Gas Density

4.5 Conclusion

This chapter presented the results from the three main studies that were per-

formed. The purpose of these studies was to evaluate the stability and limitations

of the MPEXS code. The first study was a short study with neat PBX9501 to com-

pare run-to-detonation properties against a single phase explosive code developed by

AFRL. The second study was a convergence test of detonation properties by varying

the number of computational cells for metalized PBX9501. The third study was to

study the effects of aluminum on PBX9501 by performing several simulations at a

range of aluminum mass fractions and aluminum particle diameters.
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V. Conclusions

To find solutions to the bigger issues such as the risks of injuring or killing inno-

cent civilians in current and future asymmetrical warfare, smaller more elementary

problems need to be understood. The main focus of this research was to study and

understand the effects of aluminum in high explosive such as PBX9501 using a com-

putational simulation code. The MPEXS hydrocode was utilized in this research to

perform simulations of a wide range of metalized explosive cases where the size of the

Al particle and the Al mass fraction was varied. The results were separated into two

sections, the performance evaluation of the MPEXS code and the study of the effects

of aluminum on PBX9501.

5.1 Performance Evaluation of the MPEXS Code

The MPEXS code was evaluated by performing several studies to determine the

stability and limitations of the code. The first study was a short study with neat

PBX9501 to compare Run2Det properties against the SPEXS code for different piston

speeds. It was important to establish a baseline by studying the behavior of the code

with neat PBX9501 with no aluminum. The second study was a convergence test

of detonation properties by varying the number of computational cells for metalized

PBX9501. The goal of this study was to test the stability of the code by looking for

a convergence in the data as the number of computational cells increased.

The first study showed that the average rate of change for Run2Det distance and

time between each set of mass fraction points was larger for the SPEXS code. The

difference in results in both codes does not imply the MPEXS code is bad, it only

means that different equations of state and burn rates were utilized. The takeaway

is the MPEXS code followed the same trend as the SPEXS code, where Run2Det
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distance and time decreases exponentially as the piston impact speed is increased.

The second study showed that the stability of the code was proved by the con-

verging results as the number of computational cells increased. The number of com-

putational cells is related to the resolution or the grid size of the simulation. It was

concluded that as the resolution increased, the results became closer and closer to

the same number, showing a converging pattern. The limits of the MPEXS were also

tested with the small computational cell sizes of Nx = 200 and Nx = 400. When

these small values were utilized the code failed to run. The code ran for Nx = 800

and Nx = 1000 but these small values provide unstable results that varied. It was not

until Nx values larger than 1300 when the Run2Det result began to converge. It can

be concluded that the MPEXS code, although its limitations, is stable and provides

expected results.

Below is a short bulleted list to summarize this section on performance evaluation

of the MPEXS code.

• Study 1: Neat Explosive

– Different from SPEXS due to different EOS

– MPEXS code follows same trend as SPEXS

• Study 2: Convergence Test

– Run2Det distance and time results converged as Nx increased

– Detonation velocity results converged as Nx increased

– MPEXS code is stable and provides expected results

5.2 The Effects of Aluminum on PBX9501 Explosive

The main focus of this research was to use the MPEXS hydrocode to run a wide

range of simulations of metalized PBX9501 and determine what effects aluminum
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particulates have on PBX9501. Three aluminum mass fractions were utilized; 10, 15,

and 20 percent. At each of those aluminum mass fractions, six aluminum diameters

were tested; 9, 13, 19, 23, 29, and 34 micron diameter.

The 18 simulation runs were performed for two computational cell, 800 and 2000.

The purpose of running simulations with both sizes of computational cells, 800 and

2000 cells, was to study the effects of grid size on metalized explosive simulations. It

can be concluded that the simulations using 2000 computational cells provide more

consistent results for both varying parameters, Al mass fraction and Al particle di-

ameter. In Section 4.3, it was found that at lower resolutions the detonation property

results are unstable. The same stability issues at the low resolution using 800 cells

was seen especially for detonation velocity at 15 and 20 percent Al mass fraction.

As mentioned before, run-to-detonation properties are very important in the eval-

uation of of explosive materials. Run2Det distance and Run2Det time were plotted

for all the 18 simulation runs. Increasing the Al mass fraction from 10% to 15% de-

creased the Run2Det distance by an average of 0.012 mm, where as increasing the Al

particle diameter decreased the Run2Det distance by an average of 0.001 mm. The

same observation was made for Run2Det time. It was concluded that varying the

aluminum mass fraction had a larger effect on Run2Det properties than varying the

aluminum particle diameter for both Run2Det distance and time. In general, increas-

ing the Al mass fraction will decrease the the time and distance for the detonation to

reach steady-state. If shorter Run2Det distance and time is a desired, then increase

the Al mass fraction

The other detonation properties such as detonation velocity, pressure, and density

had the following results as Al mass fraction and particle diameter were varied. Deto-

nation velocity steadily decreased as the Al particle diameter was increased. Also, as

the Al mass fraction increased the detonation velocity decreased. The results showed
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that the gas pressure steadily increased as the Al particle diameter increased at 10%

Al mass fraction. The same pressure increase with particle diameter was seen for

15% and 20% Al mass fraction. For each increase in mass fraction the first pressure

was less than than all the previous Al mass fraction cases, clearly shown in Figure

53. The gas density showed the same trends as gas pressure as discussed in this para-

graph. The gas density steadily increased as the Al particle diameter increased but

decreased when Al mass fraction was increased. It can be concluded that on average

the particle velocity remained constant with varying Al particle diameter. There is a

very small decrease in particle velocity from 10% to 15% to 20%, but not significant

enough to vary the Al mass fraction in the explosive.

The addition of metal particulates in explosive mixtures increases density to the

shock wave, causing a higher pressure in the shock. The high pressure in the shocks

are devastating and will incapacitate adversaries in physical proximity of the detona-

tion of the munition. The addition of Al particulates in explosive mixtures and low

fragmentation weapons with concentrated pressures that dissipate quickly will pro-

vide the capabilities needed to develop weapons needed to fight current and future

asymmetric warfare. In conclusion, this research significantly contributes to both cur-

rent explosive simulation analysis and development of future explosive formulations

for better munitions that will save many lives.

Below is a short bulleted list to summarize this section on the effects of aluminum

on PBX9501 explosive.

• Aluminum Particle Size - Increases

– Pressure - Increases

– Density - Increases

– Particle Velocity - Remained constant
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– Run2Det Distance and Time - Small decrease

– Detonation Velocity - Decreases

• Aluminum Mass Fraction - Increases

– Pressure - Decreases

– Density - Decreases

– Particle Velocity - Remained constant

– Run2Det Distance and Time - Decreases

– Detonation Velocity - Decreases

5.3 Recommendations

Based on the results for metalized explosive PBX9501, the best explosive mixture

is PBX9501 at 10% aluminum mass fraction and 34 µm aluminum particle diameter.

PBX9501 10 34 has the highest gas pressure and density for both particle diameter

and mass fraction. The gas pressure for this case is 43.64 GPa and the gas density is

2419 kg/m3. The detonation velocity was the lowest for 10% mass fraction but it was

higher than the other mass fractions. The detonation velocity for this case is 7.997

km/s. The Run2Det time is 0.258 µs and the Run2Det distance is 1.017 µm. All these

properties are for a piston speed of 1.5 km/s. If a shorter Run2Det time and distance

is desired, the aluminum mass fraction can be increased to 15% with an aluminum

particle diameter of 34 µm but there will be some losses in other parameters. For 15%

Al mass fraction, the Run2Det time is 0.232 µs and the Run2Det distance is 0.926

µm. The pressure and density will not affected as much by the increase in aluminum.

The gas pressure for this case is 42.31 GPa and the gas density is 2361 kg/m3. The

detonation velocity for this case is 7.848 km/s, a loss of 149 m/s. The aluminum

mass fraction of 20% can be utilized but the benefits gained are not worth it.
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Below is a short bulleted list to summarize this paragraph on explosive recom-

mendations.

• Best mixture - PBX9501 10% 34 µm

– Highest Pressure: P = 43.64 GPa

– Highest Density: ρ = 2419 kg/m3

– Lowest Detonation Velocity for 10% but higher than 15% and 20%: D =

7.997 km/s

– Run2Det Time: t = 0.258 µs

– Run2Det Distance: x = 1.017 mm

• If shorter Run2Det time and distance is desired

– Increase Al mass fraction to 15%

– Results in losses in Pressure, Density, and Detonation Velocity

• No - Al mass fraction of 20%

– Results in losses in Pressure, Density - deviates from munitions purpose

The MPEXS hydrocode is still in a testing phase, therefore there are many op-

portunities for improvement and ease of use. Throughout this research there were

several updates to the code that came from testing. The most current version that

was utilized to generate the results presented in this document still has limitations

and issues to be worked on. In Section 4.3 it was documented that the code would

stop short of the final run time for all the cases. The short running times might be

due to larger numerical errors in lower resolution simulations versus errors in higher

resolution simulations. The short running time issue should be corrected in future

versions of the code. Another reported issue discussed in Section 3.6.2 was that the
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code fails and quits the simulation run for piston impact speeds of 2.0 km/s at high

Al mass fraction cases. This high metal mass fraction, high impact speed problem has

been reported to AFRL, so it can be resolved in future versions of the code. It would

be useful if the MPEXS code provided feedback to the user when bad inputs are

entered or when input parameters are outside the limits of the code. Error messages

before the simulation begins should be added to future versions of the code. The

MPEXS code is stable and provides good results for metalized PBX9501 explosive.

The next step is to make the code more user friendly, add more EOS to handle more

explosives, and improve feedback for inputs that will make the code crash.

Below is a short bulleted list to summarize this paragraph on future MPEXS code

versions.

• Fix all reported issues

– Simulations stopping short of final time

– Issues with high Al mass fraction with high impact speeds

• Make code more user friendly

– Better input interface

– Error/Warning messages for inputs outside limits

• Add capability for more explosives and metals
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